
~,UNCLASSLFIEQ Copy 8 of 15 copies

0IDA PAPER P-2099

N THE Ada RECOMPILATION CONTAINMENT TOOL
N

* Stephen H. Edwards

DTIC
lE LECTE

July 1988 0T1110

Prepared for
STARS Joint Program Office

* I-. DISth!M~~~fOfl s-rmtE A

Approved topuiczuq -

• INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria, Virginia 22311-1772

9 UNCLASSIFIED IDA Log No. NO 88-033448

- II

OEFINITIONS
IDA publishes the following documents to report the results of Its work.

Reports
Reports are the most authoritative and most carefully considered products IDA publishes.
They normally embody results of major projects which (a) have a direct bearing on
decisions affecting major programs, (b) address issues of significant concern to the
Executive Branch, the Congress and/or the public, or (c) address issues that have
significant economic Implications. IDA Reports are reviewed by outside panels of experts
to ensure their high quality and relevance to the problems studied, and they are released
by the President of IDA.

Group Reports

Group Reports record the findings and results of IDA established working groups and
panels composed of senior Individuals addressing major issues which otherwise would be
the subject of an IDA Report. IDA Group Reports are reviewed by the senior individuals
responsible for the project and others as selected by IDA to ensure their high quality and
relevance to the problems studied, and are released by the President ot IDA.

Papers
Papers, also authoritative and carefully considered pr icts of IDA, address studies that
are narrower in scope than those covered in Reports. liA Papers are reviewed to ensure
that they meet the high standards expected of refereed papers in protessionai journals or
formal Agency reports.

Documents
IDA Documents are used for the convenience of the sponsors or the analysts (a) to record
substantive work done in quick reaction studies, (b) to record the proceedings of
conferences and meetings, (c) to make available preliminary and tentative results of
analyses, (d) to record data developed in the course of an Investigation, or (e) to forward
information that is essentially unanalyzed and unevaluated. The review of IDA Documents
is suited to their content and intended use.

,.- 0'

The work reported in this document was conducted under contract MOA 903 84 C 0031 for
the Department of Defense. The publication of this IDA document does not indicate
endorsement by the Department of Defense, nor should the contents be construed as
reflecting the official position of that Agency.

This Paper has been reviewed by IDA to assure that It meets high standards of
thoroughness, objectivity, and appropriate analytical methodology and that the results,
conclusions and recommendations are properly supported by the material presented.

© 1990 Institute for Defense Analyses

The Government of the United States Is granted an unlimited license to reproduce this 0
document.

DISCLAIMER OF WARRANTY AND LIABILITY

This is experimental prototype software. It is provided "as ie without warranty or
representation of any kind. The Institute for Defense Analyses (IDA) does not warrant,
guarantee, or make any representations regarding this software with respect to
correctness, accuracy, reliability, merchantability, fitness for a particular purpose, or
otherwise.

Users assume all risks in using this software. Neither IDA nor anyone else involved in the
creation, production, or distribution of this software shall be liable for any damage, Injury,
or loss resulting from its use, whether such damage, injury, or loss is characterized as
direct, Indirect, consequential, incidental, special, or otherwise.

Approved for public release, unlimited distribution; 30 August 1990. Unclassified.

Ill I I

REPORT DOCUMENTATION PAGE 1Form Approved

I OMB No. 0704-0188
Public reporting burden for this collection of Infornation Is estimated to average 1 hour per response, including the time for reviewing instructions, seiarching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of Information. Send comments regarding this burden estimate or any other aspect of this collection of information.
including suggestions for reducing this ,urden, to Washington Headquarters Services, Directorate for Information Operations and Reports. 1215 Jefferson Davis Highway, Sule 1204. Arlngton.
VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704.0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

July 1988 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

The Ada Recompilation Containment Tool

MDA 903 84 C 0031

6. AUTHOR(S) A- 134

Stephen H. Edwards

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Institute for Defense Analyses REPORT NUMBER
1801 N. Beauregard St. IDA Paper P-2099
Alexandria, VA 22311-1772

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

STARS Joint Program Office
1400 Wilson Blvd.
Arlington, VA 22209-2308

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release, unlimited distribution; 30 August 2A
1990.

13. ABSTRACT (Maximum 200 words)

IDA Paper P-2099, The Ada Recompilation Containment Tool, documents the development of
an Ada software prototype for the STARS Joint Program Office. It describes the Ada
Recompilation Containment Tool (ARCT), a prototype based on the ideas presented in "A New
Reference Model for Change Propagation and Configuration Management in Software Systems"
by Joseph L. Linn et al. The article is reprinted in Appendix D. The primary requirement for the
ARCT prototype was that it reduce compilation time. Although the tool was conceived to
support Ada programming in-the-large, even very small projects can greatly benefit from the
recompilation time savings.

14. SUBJECT TERMS 15. NUMBER OF PAGES
148

Ada Programming Language; Recompilation; Tools and Techniques; 16. PRICECODE
Prototyping; Software Configuration Managcment; Compilers.

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

UNCLASSIFIED

IDA PAPER P-2099

THE Ada RECOMPILATION CONTAINMENT TOOL

Stephen H. Edwards

July 1988

IDA

INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 84 C 003 I
DARPA Assignment A-134

UNCLASSIFIED

UNCLASSIFIED

Table of Contents
1.0. INTRODUCTION ... 1

2.0. SCOPE .. . 1
3.0. BACKGROUND 1

4.0. REQUIREMENTS SPECIFICATION 1
5.0. DEVELOPMENT PLAN .. 2

6.0. DESIGN SPECIFICATION .. 2

7.0. TEST PLAN ... 3
Appendix A: USER'S GUIDE ... 7

A.1. Introduction ... 7

A.2. How ARCT Works .. 8

A.3. Description of Main ARCT Data Structures ... 9

A.4. Make-File Syntax ... 11

A.4.1. Construction Procedures .. 12

A.4.2. A Make-File Generator .. 12

A.5. A Full ARCT Example .. 13

A.5.1. An Example ARCT Make-File ... 17

A.5.2. CHANGE-TYPE Pragmas .. 19
Appendix B: COMMENTED SOURCE CODE .. 25

B.1. GRAPH-MANAGER Package .. 26

GRAPHMANAGER Package Specification (graph manager.a) 27

GRAPH-MANAGER Package Body (graph-manager.b.a) 28

GRAPHS Package (graphs.a) .. 41

B.2. MAKEPROCS Package .. 44

MAKEPROCS Package Specification (make-procs.a) 44

MAKE-PROCS Package Body (make procs.b.a) .. 44

MAKEUTIL Package Specification (make-util.a) .. 64

MAKE.UTIL Package Body (make-util.b.a) ... 64

B.3. Main Programs ... 75
ARCT.ADA (arct-ada.a) ... 76
ARCTCREATE (arct-create.a) .. 77
ARCTCURRENT (arct-current.a) ... 79

ARCTDESCEND (arct-descend.a) .. 81
ARCTJDIR (arct-dir.a) ... 82

ARCTEDIT (arctedit.a) ... 83

ARCrMAKE (arct-make.a) .. 85
MAKE.MAKE (make-make.a) ... 86

B.4. Library Units ... 92
ARCT-GLOBALS Package Specification (arctglobals.a) 92
ARCTGLOBALS Package Body (arct-globals.b.a) .. 92
ARG.SCANNER Package Specification (arg-scanner.a) 94
ARG-SCANNER Package Body (arg-scanner.b.a) ... 94

FILEUTIL Package Specification (file.util.a) .. 95
FILE-urIIL Package Body (file-util.b.a) ... 96

UNCLASSIFIED

UNCLASSIFIED i

MY-.STRINGS Package Specification (my-.strings.a)............................... 102
MY-STRINGS Package Body (my...strings.b.a) 103
S'rNDAP.D-JST Package Specification (standard-list.a)......................... 105
Definiton of Package COUNT-10 (COUNT-JO-def.a)......................... 107
Definiton of Package INT-10 (INTJIO.def a)...................................108

Appendix C: TEST RESUJLTS .. 109
Appendix D: "A New Reference Model for Change Propagation and Configuration

Management in Software Systems". .. 119

UNCLASSIFIED

UNCLASSIFIED iii

PREFACE

IDA Paper P-2099, The Ada Recompilation Containment Tool, is a report on the development of
an Ada software prototype for the STARS Joint Program Office.

The importance of this document is based on fulfilling the objective of task order T-D5-429,
Software Technology Acceleration Project, which is to develop selected prototype Ada software
components. The Ada Recompilation Containment Tool will be used to improve the software
productivity of Ada programmers and is directed towards individuals interested in Ada software
development.

The document was reviewed on April 20, 1988 by the members of the following CSED Peer
Review: David Carney, Robert Winner, Robert Knapper, James Baldo, and Julia Sensiba.

P-2099 should be considered a companion paper to "A New Reference Model for Change Propa-
gation and Configuration Management in Software Systems," by Joseph L. Linn, Cathy Jo Linn,
and Robert I. Winner. This paper is included in the text of P-2099 as Appendix D.

Thanks go to Robert Knapper, whose input was enormously beneficial.

Accession For

OTIC TAB [

Uwarnounced
Just I cation

By__
Distribution/

Availability Codes
Avail and/or

Dist 1 SpIal

UNCLASSIFIED

UNCLASSIFIED 1

1.0. INTRODUCTION

This paper was written to satisfy deliverable 4.1.1 of task order T-D5-429. Its purpose is to
describe the Ada Recompilation Containment Tool (ARCT) prototype written for the STARS
program. This tool incorporated a new method of specifying Ada module interdependencies
aimed at reducing the amount of necessary recompilation.

2.0. SCOPE

The primary topic of discussion in this paper is recompilation containment. The paper describes
the prototype ARCT tool and its use, as well as the main data structures it employs. It also
explains the difficulties in hooking such a tool to an off-the-shelf Ada compiler. Although exten-
sive efforts were made to forge such a iink, it was impossible to hook the ARCT to many com-
pilers. Where it was possible, the cost was prohibitive (obtaining source code rights and modify-
ing sections of the compiler). A full explanation of these problems and their origins is given in
section 7.0.

3.0. BACKGROUND

The ARCT prototype tool is based on ideas presented in "A New Reference Model for Change
Propagation and Configuration Management in Software Systems," by Joseph L. Linn, Cathy Jo
Linn, and Robert I. Winner. The ARCT tool is an experimental implementation of the system
proposed in that paper, and P-2099 should be considered as a companion to this earlier work
(which is reprinted as Appendix D).

4.0. REQUIREMENTS SPECIFICATION

The primary requirement for the ARCT prototype is that it reduces compilation time. Although
the tool was conceived to support Ada programming-in-the-large, even very small projects can
greatly benefit from the recompilation time savings. To achieve this goal, the ARCT follows a
modified set of recompilation rules. The Ada Language Reference Manual (LRM) states the
recompilation rules for Ada units in section 10.3:

10.3(5) A compilation unit is potentially affected by a change in any library unit named by its
context clause. A secondary unit is potentially affected by a change in the
corresponding library unit. The subunits of a parent compilation unit are potentially
affected by a change of the parent compilation unit. If a compilation unit is success-
fully recompiled, the compilation units potentially affected by this change are
obsolete and must be recompiled unless they are no longer needed. An implementa-
tion may be able to reduce the compilation costs if it can deduce that some of the
potentially affected units are not actually affected by the change.

The ARCT tool allows a programmer to specify the recompilation rules used by the tool, which in
turn allows better recompilation behavior. The primary difference between this approach and

UNCLASSIFIED

UNCLASSIFIED 2

that specified in 10.3(5) is that ARCT guarantees compliance with the programmer's specifications
whereas 10.3(5) guarantees compliance with Ada semantics.

5.0. DEVELOPMENT PLAN

The ARCT prototype development began in July, 1986, as an experimental implementation of the
change propagation reference model specified in Appendix D. By September, 1986, it was
implemented in Ada and running on a DEC VAX, but was not hooked to a compatible Ada com-
piler. In July, 1987, the development resumed with the porting of the ARCT to the Sun Unix
environment. Again, no compatible compilers were found. The User's Guide (Appendix A)
was completed in September, 1987. Final documentation was drafted in late December, 1987,
and completed in July, 1988.

6.0. DESIGN SPECIFICATION

The ada recompilation rules stated in the LRM, and discussed in section 4.0, define the set of
units which are potentially affected by any change to some library unit. Current Ada implemen-
tations require all potentially affected units to be recompiled. For example, any small changes to
a package of commonly used library functions for a project can result in a large number of
recompilations, even though the change may affect only a handful of other units. The Ada
Recompilation Containment Tool (ARCT) encorporates a new change control policy and set of
recompilation rules to minimize the amount of unnecessary recompilation. This tool is based on
ideas presented in "A New Reference Model for Change Propagation and Configuration
Management in qoftwar- yZvtems," by Jo-eph L. Linr, Ca.hy Jo Linn, and Robert I. Winner.

This model of change propagation can be viewed as a new specification of Ada module inter-
dependencies. Rather than stating that one Ada unit depends on the entire contents of another
Ada unit, a programmer can arbitrarily divide his code into small sections. The programmer
may then specify that a given unit depends on some subset of the pieces which make up another
unit. This mechanism allows the programmer to specify the interdependencieq between Ada
units to a fine granularity, ensuring that units will only be recompiled when a section those units
depend on is changed.

The programmer uses CHANGETYPE pragmas in source files to demarcate regions which other
units depend on, then specifies these dependencies in make-files similar to those used by the
UNIX make utility. When a programmer does not wish to divide the units, recompilation
behavior will be as before. The more effort a programmer applies to dividing the code and creat-
ing an effective make-file, the greater the possible reduction in recompilation time.

The heart of the ARCT is the program arct.make, which reads these make-files, discovers
changes to source files in the library, and invokes the compiler. The functionality of arct.make is
also based on the UNIX make utility. A make file is necessary for this system to work effectively.
When a programmer states in a make-file that one unit does not depend on another when in real-
ity it does, inconsistent results will be obtained.

UNCLASSIFIED

UNCLASSIFIED 3

7.0. TEST PLAN

To complete the ARCT system, it is neccessary to have a validated Ada compiler that is not
integrated into a vendor development system. At this time, Ada compilers being marketed have
been written with the LRM recompilation order deeply embedded in their design. This has been
the source of significant problems in the development of the ARCT prototype.

The reason for this problem is the database of dependency information that must be maintained
by the Ada compiler. In the Verdix compiler, for example, this database is held in the form of a
group of files, each containing the DIANA tree for some program unit. Other compilers, such as
the Telesoft or DEC compilers, keep all of this information in one centralized file. Either way,
these intermediate representa!ions are highly interdependent. To make such a compiler behave
more like a conventional compiler, the intermediate forms must be made as independent as pos-
sible, and the timestamped ties between the trees should not be timestamped.

The idea is not to produce an Ada compiler which does not use DIANA as an intermediate form,
but rather to produce a more robust compiler which does not rely on the sanctity of its DIANA
representations. For example, the Verdix compiler maps all of the DIANA trees in a given library
into a Global Virtual Address Space. It is this virtual address which other DIANA trees depend-
ing on this unit use in referencing it. If the unit is recompiled and given a new virtual address, all
previous references are no longer valid. This is acceptable given the assumptions allowed by the
LRM, and may be a good idea for performance reasons. However, it introduces many unneeded
interdependencies between DIANA trees. A more symbolic form of linking would make Verdix's
intermediate form more general, and more capable of embracing new compilation concepts such
as the ARCT.

The Telesoft compiler appears to be more receptive to the ARCT approach. This is because all
the DIANA trees are stored in one file, and the only compilation order checking that is done relies
on a single timestamp field for each program unit. These fields are also in the DIANA hie, and it is
a simple matter to change one of them to fool the compiler into thinking some unit is up-to-date.
Unfortunately, more subtle interdependencies exist upon which the Telesoft compiler relies.

As an example, consider the following Ada units:

package A is

type MY_INT is new INTEGER;

procedure DOSOMETHING(ARG: in MY._INT);

end A;

with A;
package B is

use A;

-other stuff here

end F;

with B;

UNCLASSIFIED

UNCLASSIFIED

use 13,

procedure C is
oegin

-do something here too
end;

Even if a relatively innocuous change should be made to package A,
such as:

package A is

type MYINT is new INTEGER;

procedure DO.SOMETHING(ARG: in MY.INT);

type MYINT2 Is new INTEGER;

end A;

changing the timestamp on unit B and then compiling C would
cause the compiler to crash, even though this change should
not have altered A's
DLANA
representation enough to prevent proper
compilation of C.

To achieve such separation in the intermediate representations,
an Ada compiler will probably have to be very cleanly separated into
an
Ada-to-DIANA
translator and a
DIANA-to-object-code
translator.
Even though this seems to be the model used by existing compilers,
their lack of separation and heavy dependence on assumptions about
their intermediate representations and the recompilation order make
them less flexible for use with new tools such as the
ARCT.

Because the
ARCT
could not be successfully hooked to an existing Ada compiler, the test
plan consisted of running the tool on a test library and collecting the
commands it would have executed if there were a working compiler interface.
The
ARCT
then updated its graphs based upon the successful completion of the dummy

UNCLASSIFIED

UNCLASSIFIED 5

commands. The test library was based directly on examples presented in
Appendix D, and complete results for all tests are presented in Appendix C.

UNCLASSIFIED

0
UNCLASSIFIED 6

40

UNCLASSIFIED

UNCLASSIFIED 7

Appendix A: USER'S GUIDE

A.1.
Introduction

Section 10.3 of the
Ada Language Rejerence Manual
states the recompilation rules for Ada units:

10.3(5) A compilation unit is potentially affected by a change in any library unit named by its
context clause. A secondary unit is potentially affected by a change in the
corresponding library unit. The subunits of a parent compilation unit are potentially
affected by a change of the parent compilation unit. If a compilation unit is success-
fully recompiled, the compilation units potentially affected by this change are
obsolete and must be recompiled unless they are no longer needed. An implementa-
tion may be able to reduce the compilation costs if it can deduce that some of the
potentially affected units are not actually affected by the change.

Current Ada implementations require all potentially affected units to be recompiled. For exam-
ple, any small changes to a package of commonly used library functions for a project can result
in a large number of recompilations, even though the change may affect only a handful of other
units. The Ada Recompilation Containment Tool (ARCT) encorporates a new change control
policy and set of recompilation rules to minimize the amount of unnecessary recompilation.
This tool is based on ideas presented in "A New Reference Model for Change Propagation and
Configuration Management in Software Systems," by Joseph I Linn, Cathy Jo Linn, and
Robert I. Winner.

This model of change propagation can be viewed as a new specification of Ada module inter-
dependencies. Rather than stating that one Ada unit depends on the entire contents of another
Ada unit, a programmer can arbitrarily divide his code into small sections. The programmer
may then specify that a given unit depends on some subset of the pieces which make up another
unit. This mechanism allows the programmer to specify the interdependencies between Ada
units to a fine granularity, ensuring that units will only be recompiled when a section those units
depend on is changed.

The programmer uses CHANGETYPE pragmas in source files to demarcate regions which other
units depend on, then specifies these dependencies in make-files similar to those used by the
UNIX make utility. When a programmer does not wish to divide the units, recompilation
behavior will be as before. The more effort a programmer applies to dividing the code and creat-
ing an effective make-file, the greater the possible reduction in recompilation time.

A make-file is necessary for this system to work effectively. When a programmer states in a
make-file that one unit does not depend on another when in reality it does, inconsistent results
will be obtained.

UNCLASSIFIED

UNCLASSIFIED 8

A.2. How ARCT Works

The ARCT system is implemented in Ada under the Verdix Ada Development System, Version 5
(VADS5). ARCT consists of two Ada programs which functionally replace the VADS5 functions
arct.make and arct.ada.

The arct.make program replaces the VADS5 program of the same name, and provides all the
make services associated with ARCT. The invocation syntax is:

arct.make unit-name
or

arct.make -b unit-name make-file

If invoked with only a unit name, arct.make assumes that the given unit already has a make-file
associated with it. If there is no associated make-file, an error message is produced. If the -b
option is used, the file name after the unit name is taken to be a make-file, and if that file exists,
its name is bound to the given unit to be used with later arct.make commands. arct.make then
processes the given make-file. For each unit specified in the make-file, arct.make scans the
current source file for each of its dependents to discover any changes which have been made
(this is called a change-discovery-operation), and uses this information to determine if the
specified unit needs to be reconstructed. If the unit does need to be reconstructed, arct.make
invokes the Verdix compiler, the linker, or executes the construction procedure given in the
make-file. It assumes that the current source file for each unit exists in the current directory.

The arct.ada command is actually a program which "wraps around" the Verdix ada command.
It passes all of its arguments to the compiler without changing them. Its only purpose is to deter-
mine which source files are successfully compiled, and add them to the source archives for use in
future change-discovery-operations. The invocation syntax is the same as for the Verdix pro-
gram:

arct.ada [options] file [files]

Successfully compiled source files are copied into the .arct.source directory in the current ada
library and added to the source archive graph structure. If these are descendants of earlier files
for the same unit, make-files are inherited from these parent files.

Optionally, the arct.edit program may be used when editing program units. aret.edit will
automatically place the old version of the source file in the source archive, update the source •
archive graph, and place the results of the edit session in a new file. This is a rudimentary inter-
face to the version control facilities provided by the ARCT, and allows the source archive to con-
tain all previous versions of a unit's source, rather than just those which were compiled.

U

UNCLASSIFIED O

UNCLASSIFIED 9

A.3. Description of Main ARCT Data Structures

The core of the ARCT system consists of two data structures: the source archive graph and the
derived unit graph. The source archive graph contains a record of the last N versions of all suc-
cessfully compiled Ada source files in the program library, and their interrelationships. Each
time the compiler successfully compiles a source file, that file is copied into the .arct.source sub-
directory, and recorded in the source archive graph. There is a one-to-one mapping between the
set of Ada source files in the .arct.source and the nodes in the source archive graph. Similarly,
the derived graph keeps track of all files in the library derived from the Ada source files. There
is also a one-to-one correspondence between derived files in the library and nodes in the derived
unit graph. As these two graphs are structurally identical except for the number and names of
the fields associated with the individual nodes, their structure will be discussed simultaneously.

Each graph is represented by a record consisting of two elements: an integer representing the
number of nodes in the graph, and a pointer to an array of nodes. Each graph is actually a
dynamic array of nodes, and each element in the dynamic array is a pointer to a node record.
This is how the main portion of the graph is stored.

(mergedparent unit :mainmaeie -

merged par file : main.9.a merged parent(if any) current :false (if any)
S_ makefile: main.makefile

f

unit :main
file : main.1O.a

current : true
makefile : main.makefile

(alternate child" alternate child "

(if any) Jmeitchl (if any) J
D C

Figure A.3-1. Source Archive Graph-a sample source archive
graph node, showing existing relationships with arrows, and pos-
sible future relationships with dotted arrows. The node in the
center represents the current node in the source archive graph

for the unit "main," The node(s) at the top represent the

parent(s) for this unit, and the nodes at the bottom represent the
children which may be descended from this node in the future.

UNCLASSIFIED

UNCLASSIFIED 10

At this stage, the two graphs begin to differ. First, the source archive graph: each node record in
the source archive graph has in addition to the informational fields, two arrays of integers. One
array contains information about the arcs outgoing from this node and the other contains infor-
mation about arcs incoming to the node. The outgoing array contains the subscripts of the nodes
in the graph which receive arcs from this node, while the incoming array contains the subscripts
of nodes which send arcs to this node. These two arrays are named the "parent" and "child"
arrays, respectively.

The derived graph nodes carry only a "child" array, which is different from the child arrays in the S
source archive graph. This difference exists since a node in the derived graph can depend on
nodes in either the source archive graph or the derived graph. Each array element in a derived
child array is a record with two fields. The first, called "node," is the array index of that particu-
lar child node in one of the two graphs. The second field is a boolean called "derived" which is
true if that child is also a derived unit, and false if that child is an Ada source file in the source
archive graph. All derived unit nodes have a "type" designated by a single character. This type
is help in the node field "Ltype." This corresponds roughly to the file extension (where the unit
name is the file-name proper) of the file used to hold this particular unit. If the derived node is a
passthru node, its L.type is''.

Neither of these two data structures can be accessed directly. Their definitions are in the package
GRAPHS, and they can only be accessed through procedures in the package GRAPH.MANAGER or
the package MAKEPROCS.

Source Archive Graph

sourcource node source dsource node for 2nd for 3r

C\'derived node derived node..
•~~~~~~~~~ ~~~~ °..............

Derived Unit Graph/ ----
/ f an~other derive
/ node ,

Vj

unit : mai

type : e'
version e3

#I

node
I I.

/ 1

Figure A.3-2. Derived Unit Graph-an example derived unit
graph node, showing how it can ddeedrived nodes

as well as nodes in the source archive graph.

UNCLASSIFIED

UNCLASSIFIED 11

A.4. Make-File Syntax

An ARCT "make-file" is a text file describing dependencies between derived files and the source
and derived files used to construct them. A make-file can specify dependencies and construction
procedures for any number of derived units, with only one restriction on the order: if a derived
unit depends on another derived unit, the second unit's dependencies must be described earlier
in the make-file. This is analogous to the "define before use" rule in Ada source code.

The make-file consists of a list of statements, each describing the dependencies and construction
procedures for a given derived unit.

statement ::= unit-identifier : dependency.Jist [construction-procedure]

dependency-list ::= unit-identifier [excludelist] (unit-identifier [exclude-Jist])

construction-procedure ::= (constr.graph.character }

unit-identifier ::= letter {[underline] letteror.digit } [. letter]

excludeJist ::- / change-type { / change-type }

change-type ::- letter {[underline] letterordigit }

Where letteror_digit is defined in the Ada LRM and constr.graph-character is any
graphic-character (as defined in the LRM) excluding the ';'. Following is an example of a more
detailed make-file, which contains all possible make-file structures:

pl.o: pl.a;

p2.o : p2.a;

main.o : main.a
pl.a /body-nprocs /guide
p2.a /body-n.procs:

ada -M main.a;

mainpass: main.a
pl.a /body.n-procs /guide
p2.a /body-nprocs /i2def;

sl.o : sl.a mainpass:

s2.o : s2.a mainpass;

main.e : pl.o p2.o main.o sl.o s2.o:
link pl.o p2.o main.o sl.o s2.o -o main;

UNCLASSIFIED

UNCLASSIFIED 12

A.4.1. Construction Procedures

When changes are made to the units a derived unit depends upon, then the derived unit must be
reconstructed. This is done within the MAKE procedure by a call to the MAKEPROCS internal
procedure BUILD-IT. If no construction procedure is specified for a given make-file, its exten-
sion is tested. If it is .E, then the linker is invoked to link all of the files of type .0 in its depen-
dency list together. If the derived file is any other type, the Ada compiler is invoked on the first
file in its dependency list.

If a construction procedure is specified in the make-file for that derived unit, then it is processed
and passed on to the operating system for execution. The output from the above example
(assuming all of the derived units need to be constructed) would be:

ada pl.a
ada p2.a
ada -M main.a
ada sl.a
ada s2.a
link pl.o p2.o main.o sl.o s2.o -o main

A.4.2. A Make-File Generator

Programmers will probably wish to start with a make-file which describes the default dependen-
cies. Building such a file from scratch for a large collection of files can be tedious, so a make-file
generator is provided. This program, called make.make, is the main procedure MAKE&MAKE
listed in Appendix B. It analyzes all of the files specified on its command line, creating a make-
file which will cause the files to be compiled in proper order. If no files are specified on the com-
mand line, it will read file names from its standard input until an end of file condition is reached.
Its syntax is as follows:

make.make [-a][-s] filel [file2 ...]

Normally, make.make does not include statements for deriving units which appear in with
clauses but which are not declared in any of the files specified for analysis. If the -a option is
specified, make.make will include statements for these units, even though the files they are
defined in were not analyzed. make.make also does not normally include the references to stan- 0
dard library files in any dependency lists. The -s option requests all 'with'ed files to be included
in dependency lists, including those which are in the standard library.

This program is useful in creating a make-file which a programmer can use to start, slowly adding
new dependencies and refining the granularity of old ones to achieve optimum recompilation
behavior.

UNCLASSIFIED

UNCLASSIFIED 13

A.5. A Full ARCT Example

This example is designed to demonstrate the use of ARCT tools on regular Ada material. The
code chosen for this example is taken from the ARCT directory tool used to examine ARCT source
archives. To show how to adapt existing Ada code to the ARCT system, normal code is presented
first, then gradually changed to show how more and more advantage can be gained by using
CHANGE-TYPE pragmas. This example shows how unnecessary recompilation can occur even in
small Ada projects, and how the ARCT can be used to avoid it. The first version of the source,
without any pragmas is as follows:

ARCTDIR Ada Source:

with GRAPHMANAGER, ARCTGLOBALS, ARGSCANNER, TEXTIO, UENV,
A.STRINGS, FILE-SUPPORT;

use GRAPHMANAGER, ARCTGLOBALS, ARGSCANNER, TEXTJO, UENV,
ASTRINGS;

procedure ARCTDIR is

ARGPTR : INTEGER :- 1;
OPTIONS : FLAGARRAYTYPE := RESET-FLAGS;

procedure STDERR(S : in STRING) renames FILESUPPORT.WRITETOSTDERR;

procedure STDERRLINE(M : in STRING) is
begin

STDERR(M & CHARACTER'VAL(10));
end STDERRLINE;

begin

GETARGS("dv", OPTIONS, ARGPTR);

If ARGJPTR /= ARGC then
PATH := ARGV(ARGYTR);
if PATH.S(PATH.LEN)/I '/' then

PATH :- PATH & '';
end if;

end if;
If OPTIONS('d') then

GETDGRAPH;

if not DISPLAY-DER then
PuT_.LINE("Derived unit graph is empty.");

end if;
elsif OPTIONS('V') then

GETVGRAPH;

If not DISPLAYVER then
PUrLINE("Source control graph is empty.");

end if;
else

GETVGRAPH;

DIRECTORY;

UNCLASSIFIED

UNCLASSIFIED 14

end if;
return;

0
exception

when INDEXFILENOTFOUND =>

STDERR.INE("ARCT index file not found.");
STDERRLINE("Perhaps this is not an ARCT library");
return;

when INVALID-FLAG => C
STDERRLINE('Invalid option. Correct usage:");
STDERRILINE("");
STDERRLINE(" arct.dir [-di-v] [path]");
STDERRLINE("");

return;

end ARCT.DIR;

This program is simple. Both of the local variables are used in interpreting the arguments passed
to the program by the UNIX environment (through the U_.ENV package). The ARG..TR variable is
used to keep track of the current position in the argument list, and the OPTIONS variable is used
to record the options selected by the user. Both are used in conjunction with the ARGSCANNER
package.

First, the procedure GET.ARGS is called (it is contained in the ARGSCANNER package) to inter-
pret the argument list. The syntax for invoking this program is:

C
arct.dir [-d] [-v] [path]

where path is the optional path name of the ARCT library to examine. Normally, only units
contained in this library are listed. However, the -d option asks for an extensive listing of the
derived units in the library, and the -v option asks for a complete listing of all source files in the
archive. If both options are given, only the derived listing is shown. S

To process the arguments on the command line, the procedure GETARGS is used. GETARGS is
contained in the package ARGSCANNER which has the following specification:

ARGSCANNER Ada Source:
C

package ARGSCANNER is

type FLAGARRAYTYPE is array('O' .. 'z') of BOOLEAN;

RESET-FLAGS : constant FLAG.ARRAYTYPE :-
(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,

FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FA.SE, FALSE, FALSE, FALSE,

FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,

FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,

UNCLASSIFIED

UNCLASSIFIED 15

FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE);

procedure GETARGS(POSSIBLE-FLAGS: in STRING;

FLAGS in out FLAG.ARRAYTYPE;

ARGPTR in out INTEGER);

INVALID-FLAG : exception;

end ARGSCANNER;

This procedure accepts as its first argument a string containing all characters which are valid
flags for the given program. A flag can be any character in the range 'O'..'z', and can be expressed
on a command line in the following way:

command -1 -v -asdf

As with most UNIX commands, the line above is considered to set the flags '1, 'v', 'a', 's), 'd',
and 'T. If a flag is specified on a command line but is not listed in the POSSIBLE-FLAGS argument
to GETARGS, an INVALIDFLAG exception is raised.

GETARGS begins scanning at the argument pointed to by its ARGPTR argument (if ARG.PTR = 1,
it starts with the first argument, etc.). GETARGS continues scanning until it reaches a non-flag
argument, and returns the new argument position through its ARGrR argument. For each flag
encountered, the appropriate element of the FLAGS array is set to true. Since both FLAGS and
ARG.YTR are in out arguments, a program can call GET.ARGS to get the first options on the com-
mand line, process the next argument in the list (which cannot be a flag), then iterate until the list
is empty. As long as the same variables for the argument pointer and flag :.rray are used, the
command line is processed from left to right with flags only affecting those parameters to their
right.

Once all the flags have been processed by GETARGS, the ARCTDIR program tests to see if any
arguments remain. If there are more arguments, it takes the first as the path of the ARCT library
and sets the PATH variable (contained in the package ARCTGLOBALS). This variable is used to
specify the path of the current library being accessed by ARCT tools. The specification of the
ARCTGLOBALS package is:

ARCT-GLOBALS Ada Source:

with ASTRINGS;

use A-STRINGS;

package ARCTGLOBALS Is

PATH : ASTRING := EMPTY;

procedure GETDGRAPH;
procedure BACKUP_DGRAPH;
procedure PUTDGRAPH;

UNCLASSIFIED

UNCLASSIFIED 16

procedure GETVGRAPH;
procedure BACKUP.VGRAPH;
procedure PUTVGRAPH; 0

INDEX-FILE-NOTFOUND: exception;

end ARCT_GLOBALS;

The procedures in this package are all used to manage index files containing ARCT data. The
GET, BACKUP, and PUT procedures load a graph into memory, save a graph from memory to a
backup file, and store a graph from memory into an index file, respectively. There is one set of
procedures for the derived graph structure (DGRAPH), and a complimentary set for the source
archive graph (VGRAPH).

Once the ARCT path has been established, the options on the ARCT.DIR command line are pro-
cessed. If -d is specified, the derived graph is loaded via GETDGRAPH, and displayed by the
GRAPH-MANAGER procedure DISPLAY-DER. If -v was specified, the source archive graph is
loaded and displayed. If neither option was specified, the source archive graph is loaded and a
directory of current units is displayed. If an error occurs, the exception handler is entered. It
takes care of the case where the specified path is not an ARCT library, or an invalid flag is
specified on the command line. The GRAPH-MANAGER specification which declares the directory
displaying procedures is as follows:

GRAPH-MANAGER Ada Source:
0

with TEXTjO, MY-STRINGS;
use TEXTJO, MYSTRINGS;

package GRAPH-MANAGER Is

- Type and Object declarations ommitted since they are not
- used in this example.

procedure DIRECTORY;
function DISPLAYJDER return BOOLEAN;
function DISPILAYVER return BOOLEAN;

- Other Procedure and Function declarations ommitted since
- they are not used in ARCT.DIR.

S

end GRAPH-MANAGER;

UNCLASSIFIED

0

UNCLASSIFIED 17

By examining the with clause of ARCT.DIR, it becomes apparent that this procedure depends on
seven packages (three ARCT packages in the same library and four packages from the STANDARD
library). The standard library units can be relied upon to remain constant, but the others might
change at any time. If any of these three units are recompiled, the normal Ada model would
require that ARCT.DIR be recompiled also. However, by examining the with clauses of these
three units, it becomes clear that ARCTDIR depends indirectly on even more units. For this
example, the package GRAPHMANAGER has a specification which depends on TEXTJO and
MY..STRINGS. TEXT-JQ is a library package and will remain constant, but a change in MY-STRINGS
could trigger the recompilation of GRAPHMANAGER'S specification, and in turn trigger the
recompilation of ARCTDIR. Examining the code will show that ARCTDIR does not really depend
on the unit MY-STRINGS in any way.

A.5.1. An Example ARCT Make-File

Instead of providing a rigid model of change propagation, as exists in current Ada implementa-
tions, ARCT incorporates a flexible model based loosely on the UNIX make facility. All file inter-
dependencies are specified in a script which is used by a make-like processor to trigger appropri-
ate recompilations. It is absolutely necessary for the programmer to take all dependencies into
account or inconsistent libraries will result (the risks this requirement may imply about Ada
programming-in-the-large can be greatly reduced through the use of a tool such as make.make to
be described later in this section).

A simple make-file for the ARCTDIR unit would look like:

arg.scanner.o: arg-scanner.a;

arct-globals.o: arct.globals.a;

my.strings.o: my.strings.a;

graph-manager.o: graph-manager.a
mystrings.a;

arct-dir.o: arct-dir.a
graph-manager.a
arct-globals.a
arg..scanner.a;

arct-dir.e: arct-dir.o my.strings.o graphmanager.o arct.globals.o arg..scanner.o
textio.o u.env.o a.strings.o file.support.o;

These relationships are derived from the
with
statements in each source file. The object file for a given unit
depends on the source for that unit, and also on the source files of
all units it
with's.
The process of crcating such a file directly fom the source files
is straightforward but tedious; an
ARCT
tool is provided for this purpose. The script shown was produced by this tool,

UNCLASSIFIED

UNCLASSIFIED 18

make. make,
which
recursively searches the source code for each fil.:, collecting units 41
from
with
clauses, and compiling a make-file. The tool only looks for files in
the current directory, and expects all units to have source code
stored in a file with the unit name as its root, in lower case,
and '.a' as its extension (i.e., unit
ARG-SCANNER
is stored in file
arg...scanner.a).
Any units referred to in
with
clauses which are in the standard library are omitted from the dependency
lists. Any units which are referred to but do not have a corresponding
source file in the current directory are also ommitted.
make.make
supports a
-s
option to include references to standard library units, and a

option to include references to files for which corresponding source files
cannot be found.
make.make
outputs will resemble the following:

make.make -s arcL..dir. a:

arg-.scanner.o: arg-scanner.a;

arct-globals .0: arct-lobals.a
a...strings.a;

my..strings.o: my-strings.a;

graplL-manager.o: graph...ranager.a
text-io.a
my..strings .a;

arct-dir.o: arct-dir.a
graph-m.nanager.a
arct-lobals.a
arg...scanner.a
text-jo.a
u-env.a
a-.strings.a
file-.support .a;

arct-dir.e: arct-.dir.o my-.strings.o graplumanager.o arct-.globals .0 arg-.scanner.o
tex-io .o u-.env.o a-.strings .o file...support.o;4

UNCLASSIFIED

UNCLASSIFIED 19

make.make -sa arctdir.a :

file-support.o: file.support.a;

a.strings.o: a.strings.a;

u.env.o: ucenv.a;

textjio.o: textio.a;

arg-scanner.o: arg..scanner.a;

arct-globals.o: arct.globals.a
astrings.a;

my-strings.o: my-strings.a;

graph.manager.o: graph-manager.a
text-io.a
my-strings.a;

arct-dir.o: arct-dir.a
graph-manager.a
arct-globals.a
arg_.scanner.a
textio.a
u..env.a
astrings.a
file-support.a;

arct-dir.e: arct-dir.o my-strings.o graph-manager.o arct.globals.o arg.scanner.o
textio.o u.env.o a.strings.o file-support.o;

Output for make.make -a arctdir.a is not shown since source files for all units not in the stan-
dard library are available (the output is the same in this case as if no options were specified). For
this example, the standard library files are assumed to be constant and all source files are avail-
able, so the first make.make output will be used as the basis for the ARCT_.DIR make-file script.

A.5.2. CHANGE-TYPE Pragmas

What is the difference between the using the ARCTDIR make-file to maintain the object and exe-
cutable files and relying on the normal Ada rules for recompiling? By looking at the ARCT.DIR

make-file again, it is clear that a change in the source file my.strings.a will cause the unit
GRAPH-MANAGER to be recompiled. It will not cause ARCTDIR to be recompiled, though. For
the vast majority of programs, this is perfectly acceptable. But sometimes such indirect depen-
dencies should trigger recompilation. For example, a data type in the package MYSTRINGS

could be rename'd in package GRAPHMANAGER, and the renamed version used by ARCT.DIR. If
this is the case, it is the responsibility of the programmer to make the dependency explicit in the
corresponding make-file.

UNCLASSIFIED

UNCLASSIFIED 20

Notice also the dependency of ARCT.DIR on the file graph-manager.a. If there are any non-
white space changes to the file graph-manager.a from the last time it was successfully compiled,
ARCTDIR will be recompiled. But by examining the source for both units in detail, it is clear that
ARCTDIR depends on only three lines in the GRAPH-MANAGER package specifica-,ion. Thus, if a
new function declaration were added to the specification, and GRAPH-MANAGER were recom-
piled, ARCTDIR would have to be recompiled as well, even though ARCTDIR does not depend on
the change at all.

This is the typical situation in which the ARCT model of change propagation demonstrates itb use-
fulness. The ARCT model allows the user to divide each source file linearly into contiguous seg-
ments. In a make-file statement, the "exclude list" associated with a particular dependency
specifies which of the segments to "ignore." Any changes within an excluded segment will not
trigger recompilation of the dependent unit.

The segments are delineated by CHANGE-TYPE pragmas. Such a pragma accepts two arguments:
first, a double-quote delimited string naming the segment, and second, a double-quote delimited
string used to disambiguate similar pragmas between files.

If any changes are discovered in a segment, they are given the change type specified by the first
argument. A list of change types classifying all of the changes made in the source file is col-
lected, the types in the exclude list are removed, and if any are left over, a recompilation is trig-
gered. For example, suppose the GRAPHMANAGER source file looked like this:

GRAPHMANAGER with pragma CHANGETYPES incorporated:

with TEXT..jG, NmSTRINGS;
use TEXTJ), MY-STRINGS;

package GRAPH-MANAGER is

pragma CHANGE_.TYPE("types_.nobjects", "-1705581224");

- lype and Object declarations ommitted since they are not
- used in this example.

pragma CHANGETYPE("ARCT_.DIRdependencies", "-1152799532");

procedure DIRECTORY;

function DISPLAYDER return BOOLEAN;

function DISPLAYVER return BOOLEAN;

pragma CHANGE_.TYPE(fns-n-procs", "-600013388");

- Other Procedure and Function declarations ommitted since

- they are not used in ARCTDIR.

end GRAPHMANAGER;

UNCLASSIFIED

UNCLASSIFIED 21

Any changes occurring between the "types.n.objects" pragma and the
"ARCT._DIR..dependencies" pragma will cause types.nobjects to be added to the change list.
ARC-.lhlBdependencles will be added if any changes occur between the
"ARCTDIR._dependencies" pragma and the "fns.n-procs" pragma, and any changes below
the "fns-n.procs" pragma will be given the change type fns.n.procs. If any changes occur
before the first CHANGE-TYPE pragma in the file, the type GENERAL is added to the change list. If
the statement in the make-file which specifies the dependencies of the ARCT.DIR object file is
now modified to look like this:

arct-dir.o: arct-dir.a
graph.manager.a /types n objects /fnsn.procs
arct-globals.a
arg..scanner.a;

then no changes to the file graph-manager.a will cause the unit ARCTDIR to be recompiled
unless the changes are to the segment of the filc that has been labelled
"ARCTDIR-dependencies."

The units ARCT-GLOBALS and ARGSCANNER should now examined. By modifying them as
shown, they can also be divided into logical segments by CHANGE-TYPE pragmas.

ARCTGLOBALS with pragma CHANGETYPES incorporated:

with A-STRINGS;
use A-STRINGS;

package ARCT-GLOBALS is

pragma CHANGETYPE("pathvariable", "1909261532");
PATH : A-STRING := EMPTY;

pragma CHANGE_.TYPE("dgraph.procs", "-1832925332");
procedure GET.DGRAPH;
procedure BACKUPDGRAPH;

procedure PUT.DGRAPH;

pragma CHANGETYPE("vgraphprocs", "-1280140486");
procedure GETVGRAPH;
procedure BACKUPVGRAPH;

procedure PUTVGRAPH;

pragma CHANGETYPE("additionaL-procs", "-727358928");
- Add new procedure declarations here

pragma CHANGE.TYPE("exceptions", "-174574049");
INDEX-FILENOTFOUND : exception;

end ARCTGLOBALS;

UNCLASSIFIED

UNCLASSIFIED 22

ARGSCANNER with pragma CHANGE.TYPES incorporated:

package ARGSCANNER is

pragma CHANGETYPE("typesjn.objects", "378240656");

type FLAGARRAYTYPE is array('0' 'z') of BOOLEAN;

RESET-FLAGS : constant FLAGARRAY-TYPE *=
(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,

FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,

FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,

FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
FALSE, FALSE, FALSE

pragma CHANGETYPE("fnsnprocs", "931020073");

procedure GET.ARGS(POSSIBLE.FLAGS : In STRING;
FLAGS : in out FLAGARRAYTYPE;
ARGPTR : In out INTEGER);

pragma CHANGE-TYPE("additionaLprocs", "1483799498");
- Add new procedure declarations here

pragma CHANGETYPE("exceptions", "2036578931");

INVALID-FLAG : exception;

end ARGSCANNER;

By encorporating the appropriate change types into the make-file or ARCT.DIR, the amount of
recompilation can be reduced to a minimum:

Final ARCTDIR make-file script:

arg..scanner.o: arg.scanner.a;

arct-globals.o: arct.globals.a;

my-strings.o: my-strings.a;

graph-manager.o: graph-manager.a
my.strings.a;

UNCLASSIFIED

UNCLASSIFIED 23

arcLdir.o: arct-dir.a
graph-manager.a /types-n-.objects /fns..jt.procs
arct-globals.a /additional-procs
arg-scanner.a /additionaLprocs;

arct-dir.e: arct-dir.o my-strings .o graph...manager.o arct...globals.o arg...scanner.o
text-io.o u-env .o a-strings .0 file...support .0;

.if 0

UNCLASSIFIED

UNCLASSIFIED 24

UNCLASSIFIED

UNCLASSIFIED 25

Appendix B: COMMENTED SOURCE CODE

This implementation of the ARCT was a prototyping venture, and the source code reflects this.
There are several areas where code optimizations would improve run-time performance. This
disclaimer applies to all of the ARCT source code:

DISCLAIMER OF WARRANTY AND LIABILITY

THIS IS EXPERIMENTAL PROTOTYPE SOFTWARE. IT IS PROVIDED "AS IS"
WITHOUT WARRANTY OR REPRESENTATION OF ANY KIND. THE INSTITUTE
FOR DEFENSE ANAL fSES (IDA) DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THIS SOFTWARE WITH RESPECT TO
CORRECTNESS, ACCURACY, RELIABILITY, MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, OR OTHERWISE.

USERS ASSUME ALL RISKS IN USING THIS SOFTWARE. NEITHER IDA NOR ANY-
ONE ELSE INVOLVED IN THE CREATION, PRODUCTION, OR DISTRIBUTION OF
THIS SOFTWARE SHALL BE LIABLE FOR ANY DAMAGE, INJURY, OR LOSS
RESULTING FROM ITS USE, WHETHER SUCH DAMAGE, INJURY, OR LOSS IS
CHARACTERIZED AS DIRECT, INDIRECT, CONSEQUENTIAL, INCIDENTAL, SPE-
CIAL, OR OTHERWISE.

UNCLASSIFIED

UNCLASSIFIED 26

B.1. GRAPH-MANAGER Package

DIRECTORY-Displays unit names of all current units in the version control graph in the current
window.

DISPLAYDER-Function which displays a comprehensive record of the current derived unit
graph. It returns a boolean value: false if the derived structure is empty, true otherwise.

DISPLAYVER-Function which displays a comprehensive record of the current source archive
graph. It returns a boolean value: false if the archive structure is empty, true otherwise.

ADDTOVERGRAPH-Increases the size of the version control graph node array by one. The
new node pointer is the last one in the array, and points to null.

ADDTODERGRAPH-Performs the same function as ADDTO-VERGRAPH for the derived unit
graph.

CREATEVER(fname-in, unit-in)-Adds a brand new node to the version control graph with the
given unit and file names.

FINDCURRENT(unit-in, file-out, node-num)-Locates the node with the unit name specified by
UNIT_IN and the currency flag set. It returns the file name associated with this node in FILE-OUT,
and returns the node number itself in NODENUM.

DESCEND(unit-in)-Adds a node to the version control graph as a child of the current UNIT-IN.
The new child node inherits all traits of the parent except file name (a new file name is generated 0
from the parent file name- the name and extension are the same, but the next higher version
number is used).

PARENT-FILE(node)-Function which returns the file name of the first parent of the given node.
If the given node has no parents, then (others=>' ') is returned.

NUMLCHILDREN(file)-Function which, given a file name identifying a specific node in the version
control graph, returns the number of child nodes pointed to by that node. If no node with the
given file name is found, zero is returned.

NODEEXIS'rENCECHECK(file)-Function used to test for the existence of a node with a given file
name. The boolean value returned is true only if a node with the given file name exists in the ver- 0
sion control graph.

ALTERNATIVE(file, unit-out, file.out)-The first input uniquely determines a single node in the
version control graph. If no unit with the given file name exists, nothing happens. If found, a new
child of this unit is created with uNrT.ouT as its unit name, and FILEOUT as its file name. This
allows multiple inheritance paths to be derived from a single source file. Successive calls to S
MERGE allow a node with an arbitrary number of children to be created.

STORE-VERGRAPH(fspec :in FILE-TYPE)-Stores the version control graph in a file of mode
OUTFILE.

STORE-DERGRAPH(fspec :in FIL.TYE)-Stores the derived unit graph in a file of mode
OUFILE.

UNCLASSIFIED

UNCLASSIFED 27

READVE1_GRAPH(fspec :in FILETYPE)-Reads in a stored copy of the version control graph to
replace the current copy. FSPEC must be a file of mode INFILE.

READ.DER.GRAPH(fspec :in FILE.TYPE)-Same as READVER..GRAPH, for the derived unit graph.

MERGE(new-parent, child, new-unit-name, new-le-name)- modifies a node in the version
control graph so that it has an additional parent. NEW-PARENT is a file name identifying the node
to be added to the parent array of the node to be modified. CHILD is a file name identifying the
node to add a parent to. The node is modified "in place" (no new node is created, the old one is
replaced). The names in NEWUNIrNAME and NEWFILE.NAME are assigned to the node once it
is modified so that its names can be changed. Successive calls to MERGE allow a node with an
arbitrary number of parents to be created.

MERGE(newparent, child)-The same as above, except that the current unit and file names for
the child unit go unchanged. This allows a node to be MERGEd even thought these quantities are
unknown.

SETCURRENT(unit-in, file-in)-Finds the node in the version control graph with unit name
UNITJN and the currency flag set. It resets this currency flag, then finds the node with unit name
UNITJN and file name FILEJN, setting its currency flag.

BIND(make, file)-Given MAKE, the file name of a make-file, and FILE, the file name of a file in the
version control graph- it searches for the node in the version control graph associated with FILE,
and fills that node's MAKE-FILE field with MAKE.

GETMAKEFILENAME(module)-This function finds die node in the version control graph with
unit name MODULE with the currency flag set and returns the MAKE-FILE name associated with
this node.

GRAPH-MANAGER Package Specification (graph-manager.a):

with TEXTIO,MYSTRINGS;

use TEXTIO,MYSTRINGS;

package GRAPHMANAGER is

type parent-array is array (NATURAL range <>) of NATURAL;

subtype child-array Is parent-array;

procedure DIRECTORY;

function DISPLAY_DER return Boolean;
function DISPLAYVER return Boolean;

procedure ADDTOVERGRAPH;

procedure ADD-TODERGRAPH;

procedur,! CREATEVER (fname-in :in file-name;
unit-in :n unit-name);

procedure FIND-CURRENT (unit-in :in unit-name;
file-out :out file-name;
node-num :out NATURAL);

UNCLASSIFIED

UNCLASSIFIED GRAPH-MANAGER Specification 28

procedure DESCEND (unit-in :in unit-name);

function PARENT-FILE (node :in POSITIVE)
return file-name;

function NUMLCHILDREN (file :In file-name)
return NATURAL;

function NODE-EXISTENCECHECK (file :in file-name)
return BOOLEAN;

procedure ALTERNATIVE (file :in file-name;
unit-out :in unit-name;
file-out :in file-name);

procedure STOREVERGRAPH (fspec :In FILETYPE);
procedure STOREDERGRAPH (fspec :ln FILE_TYPE);

procedure READVERGRAPH (fspec :in FILETYPE);
procedure READDERGRAPH (fspec :in FILETYPE);

procedure MERGE (new-parent :in file-name;
child :in file-name);

procedure MERGE (new-parent in file-name;
child :in file-name;
new-unit-name :in unit-name;
new-file-name :in file.name);

function SET-CURRENT (unitin :in unit.name;
file-in :in file-name)

return Boolean;

procedure BIND (make :in makefile-name;
file :in file-name);

function GETMAKE.FLENAME (module :in unit-name)
return file-name;

end GRAPLMANAGER;

GRAPHMANAGER Package Body (graph-manager.b.a):

with TExTjo, INTIO, GRAPHS, FILEUTIL, MY_STRINGS, COUNTJ.O;

use TEXTIO, INTIO, GRAPHS, FILEUTIL, MYSTRINGS;

package body GRAPH-MANAGER Is

procedure DIRECTORY is -displays names of all current units
- in the current window

UNCLASSIFIED

UNCLASSIFIED GRAPHMANAGER Body 29

begin

if ver.graph.num-el > 0 then -make sure there are nodes in graph
for i in 1..ver-graph.numel loop

- execute loop for each node
If ver-graph.vergraph-ptr(i).currency then

putJine(trim(ver-graph.vergraph-ptr(i).unit));
-if node is a current unit, then display it

end if;
end loop;

end if;
return;

end DIRECTORY;

function DISPLAYDER return Boolean is
-displays comprehensive listing of derived graph
-returns false if there are no nodes in the graph

begin

if dergraph.num-el > 0 then -make saure there are nodes in graph
for i in 1..der.graph.numel loop -repeat for each node

put("Unit :");
putline(trim(der-graph.dergraph.ptr(i).unit));
put("File Type:");
put(der.graph.dergraph-ptr(i).fLtype);
putJine("");
put("Version :");
put(der-graph.dergraph-ptr(i).version,3);
putline("");
put("Source Dependencies:");
put(der-graph.dergraph-ptr(i).s,3);
putJine("");
if der.graph.dergraph-ptr(i).s > 0 then
for j in 1..der-.graph.dergraph-ptr(i).s loop

put(dergraph.dergraph-ptr(i).source.array(j).node,4);
put(" ");
If der.graph.dergraph-ptr(i).source.array(j).derived then

putline("Derived");
else

putJine("Source");
end If;

end loop;
end if;

end loop;
return True; -when all are successfully printed

else
return False; -if no nodes in derived graph

end If;

end DISPLAY-DER;

UNCLASSIFIED

9
UNCLASSIFIED GRAPH-MANAGER Body 30

function DISPLAYVER return Boolean Is
-displays comprehensive listing of derived graph
-returns false if there are no nodes in the graph

begin

if vergraph.numel > 0 then -make saure there are nodes in graph
for i In 1..ver-graph.numel loop -repeat for each node

put("File :"); 0
putline(trim(ver-graph.vergraph-ptr(i).fname) &"..);
put("Unit :'");
putline(trim(ver-graph.vergraph-ptr(i).unit) &...);
put("Currency :");
if ver..graph.vergraph-ptr(i).currency then

putJine("True");
else

putjine("False");
end if;
put("Make file:'");
putJine(trim(ver-graph.vergraph-ptr(i).make-file) &""');
put("Parents :");
If ver.graph.vergraph-ptr(i).p > 0 then

for j In 1..ver.graph.vergraph-ptr(i).p loop
put(ver-graph.vergraph-ptr(i).parents(j),3);
put("")

end loop;
put-line("");

else
put-line("none");

end If;
put("Children:");
if ver-graph.vergraph-ptr(i).c > 0 then

for j in 1..ver.graph.vergraph..ptr(i).c loop
put(ver..graph.vergraph-ptr(i).children(j),3);
put("")

end loop;
putline("");

else
putjine("none");

end If;
putjine("");

end loop;
return True; -when all are successfully printed

else
return False; -if no nodes in derived graph

end if;

end DISPLAYVER;

procedure ADDTOVERGRAPH is -add a node to the dynamic array
-in the version graph

result :vergraph-rec; -holds the new VER..GRAPH

UNCLASSIFIED

UNCLASSIFIED GRAPH-MANAGER Body 31

i :NATURAL:= ver-graph.num-el;
-holds numel for the new graph

begin

result := (i + 1, new vgraph(1..i + 1)); -allocate new array

if i > 0 then -if there are any nodes in old array, transfer
-- them to the new array:

result.vergraph-ptr(1..i) := ver-graph.vergraph-ptr(1..i);
end if;

ver.graph := result; -replace global variable with new VERGRAPH

end ADDTOVERGRAPH;

procedure ADDTODERGRAPH is -add a node to the dynamic array
-in the derived graph
-works just like the above

result :DER.graphrec;
i :NATURAL := der-graph.num-el;

begin

result := (i + 1, new dgraph(1..i + 1));
If i > 0 then

result.dergraphptr(1..i) := dcrgraph.dergraph.ptr(1..i);
end if;
der..graph := result;

end ADDTO.DERGRAPH;

procedure CREATEVER(fname-in :in file-name; unitin :in unit-name) is
-adds a new node with no parents to the graph with the given
- file and unit names

result :ver-node-ptr; -holds pointer to new node

begin

ADDTOVER..GRAPH; -make space in dynamic array for a new node
result :- new version-node(0,0); -allocate new node
result.fname := fname.in; -file in file name
result.unit :- uniin; - and unit name
result.currency :- TRUE; -make it current
ver-graph.vergraph.ptr(ver-graph.nunel) := result;

-insert it as the new element in the array
return;

UNCLASSIFIED

UNCLASSIFIED GRAPH-MANAGER Body 32

end CREATEVER;

procedure MY-GETLINE(fspec : in FILE-TYPE; item : out STRING;
last : out NATURAL) is

-This procedure emulates the TEXTIO procedure GET-LINE
-It was necessary to write this because the MicroVaxII's
-predefined GET-LINE acts differently than it should. S
-This procedure provides the appropriate results and is
-compatible with the 8600's Ada.
-This routine isn't completely fool-proof, but it does the job

result string (item'first..item'last) := (others => '

count natural := 0;

begin

while not end-of..line(fspec) loop -loop until end of line
count := count + 1;
get(fspec,result(count)); S

end loop;
skipJine(fspec);
item result;
last count;
return;

end MYGETLINE;

procedure BIND(make :in makejfile-name; file :in file-name) Is
-This procedure binds the given make file to the node
- corresponding to the given file

dest :INTEGER:= 0;

begin

-search for node corresponding to file specified
for i in reverse 1..ver.graph .numel loop

If ver.graph.vergraph_ptr(i).fname = file then
dest := i;
exit;

end if; 5
end loop;
If dest > 0 then -if node found

vergraph.vergraph-ptr(dest).make-file:= make;
end if;

-if node isn't found, nothing happens
end BIND; •

UNCLASSIFIED

UNCLASSIFIED GRAPHMANAGER Body 33

function GET..MAKEFILENA-ME(module: in unit-name) return file-name is
-This function returns the make file name associated with
-The current node for a given unit

fname :file-name;
temp :integer;

begin

FINDCURRENT(module,fname,temp); -get the current node for the
-given unit

if temp > 0 then --If its found,
return ver-graph.vergraph-ptr(temp).make-file;

else -If not found, return blanks
return (others =>'');

end if;

end GET._MAKEFILENAME;

procedure FINDCURRENT(unitin :in unitname; file-out :out file-name;
nodenum :out NATURAL) is

-This procedure finds the node with the given unit name
- and returns its file name and array index

temp :INTEGER;

begin

for i in reverse 1..ver.graph.numel loop
if ver-graph.vergraph-ptr(i).unit = unit-in and then

ver-graph.vergraph-ptr(i).currency then
file-out vergraph.vergraphptr(i).fname;
node-num i;
return;

end If;
end loop;
fileout (others =>'');
node.num :=0;
return;

end FIND-CURRENT;

function PARENTFILE(node :in PosITIVE) return file-name is

-This function returns the file name of the first parent
-of the given node (or blanks, if the node doesn't have parents)

begin

if ver-graph.vergraph-ptr(node).p > 0 then
return(ver-graph .vergraphptr(vergraph .vergraph.ptr(node).

UNCLASSIFIED

UNCLASSIFIED GRAPH-MANAGER Body 34

parents(1)).fname);
else return (others => '');
end if;

end PARENT-FILE;

procedure DESCEND(unit-in in unit_name) is
-This procedure creates a child of the current node
-of the given unit, gives it the descended file name of that
-node, makes the parent node no longer current, and makes the,
-new child current.

filel :file.name;
parent_node :integer;
new-node :ver-node-ptr;
old-pnode :ver-node-ptr;
old-p :NATURAL;
old-c :NATURAL;

begin

FINDCURRENT(unit-in,filel,parent-node); -find the parent node
old-p ver-graph.vergraph-ptr(parent-node).p; -number of grandparents
old-c : ver-graph.vergraph-ptr(parentnode).c; -number of children
old-pnode := new version-node(old.p,oldc+l); -allocate new parent

-transfer all data from old parent node to new parent node
old.pnode.fname := ver-graph.vergraph-ptr(parent-node) .fname;
old-pnode.unit = ver-graph.vergraph-ptr(parent-node).unit;
for i in 1..old-p loop

old.pnode.parents(i)
ver-graph.vergraph-ptr(parent__node).parents(i);

end loop;
for i in 1..old-c loop

oldpnode.children(i)
ver-graph.vergraph-ptr(parent-node) .children(i);

end loop;
old.pnode.currency:f false; -make new parent node currency false
ADDTOVER.GRAPH; -add space for child in array

-set next element in parent's child array to new child node
old-pnode.children(oldc+ 1) := ver-graph.num-el;
new-node :f= new version-node(1,0); -allocate new child node
new-node.currency:= TRUE; -make it current
new-node.parents(1) := parent-node; -point to its parent
new-node.unit := old.pnode.unit; -inherit useful info
new-node.fname:= descendjnamne(old-pnode.fname);

-replace old parent node with new version of parent
ver.graph.vergraph-ptr(parent.node) := old-pnode;

-irstall the child node
ver-graphvergraph-ptr(ver-graph.num-el) := new-node;
return;

UNCLASSIFIED

UNCLASSIFIED GRAPH-MANAGER Body 35

end DESCEND;

function NUMCHILDREN(file :in file-name) return NATURAL is

result :NATURAL:= 0;

begin

for i in reverse 1..ver-graph.nurn-el loop
if ver-graph.vergraphptr(i).fname = file then

result :- ver.graph.vergraphptr(i).c;
exit;

end if;
end loop;
return result;

end NUNLCHILDREN;

function NODEEXISTENCECHECK(file :i' file-name) return BOOLEAN is

begin

for i in reverse 1..ver-graph.num-el loop
if ver-graph.vergraph-ptr(i).fname = file then

return i'ue;
end if;

end loop;
return False;

end NODEEXISTENCECHECK;

procedure ALTERNATIVE (file :in file-name;
unit-out :in unit-name;
file-out :in file-name) Is

result :ver.nodeptr;
new-parent :vernode.ptr;
parent :INTEGER := 0;

begin

-find the parent node:
for i in reverse I..ver-graph.numel loop

If ver-graph.vergraph-ptr(i).fname = file then
parent := i;
exit;

end if;

UNCLASSIFIED

UNCLASSIFIED GRAPHJVIANAGER Body 36

end loop;
if parent > 0 then -parent = 0 means parent not found

-allocate and fill new child node
result :=new version-.node(1 ,O);
result.unit := unit-out;
result.fname := file-..out;
result. parents(l) :=parent;
result .currency :=TRUE;

-make space for it
ADD-TO.NER-.GRAPH;

-install it
ver..graph .vergraph...ptr(ver-graph .num-.el) :=result;

-allocate new parent node and copy from old parent
new-parent :=new version...node(ver...graph.vergrapk..ptr(parent).p,

ver-graph.vergraph-ptr(parent).c + 1);
new-parent .unit :=ver-grapli.vergraph-.ptr(parent) .unit;
new-parent .fname :=ver-.graph.vergraph...ptr(parent).fname;
new...parent .currency := ver-.graph.vergraplL-ptr(parent) .cufrency;
for I in 1. .new...parent.p loop

new...parent .parents(l)
ver-graph .vergraph-ptr(parent) .parents(l);

end loop;
for 1 In L. .new-..parent. c - 1 loop

new-.parent.children(l) :
ver-graph .vergraph-.ptr(parent).chlldren(l);

end loop;0
-point to new child

new..parent .children(new...parent.c) :=ver-.graph .num-el;
-install in place of old parent

ver-graph.vergraph-ptr(parent) :=new-..parent;
end If;

return;

end ALTERNATIVE;

procedure STORE-VERGRAPH(fspec In FILE-..TYPE) Is

-Stores copy of the version control graph into a text file

begin

-store number of nodes in graph
put(fspec ,ver-.graph.nunx-el,width=>6);

-sotre each node:
for i in 1..ver-.graph.numnel loop

put(fspec ,ver-graph.vergraplt-ptr(i) .p,width=>6);
put(fspec ,ver..graph.vergraplt.ptr(i) .c ,width->6);
putJine(fspec ,ver-raph.vergraph..ptr(i).fnanie);
putJine(fspec ,ver-.graph .vergraph..ptr(i) .unit);
put.Jine(fspec ,ver...graph .vergraph-.ptr(i) .makejfile);
if ver-raph .vergraph-ptr(i) .currency then

UNCLASSIFIED

UNCLASSIFIED GRAPH.MANAGER Body 37

put(fspec,'T'); -store currency
else put(fspec,'F');

* end if;
if ver-.gaph.vergraph-ptr(i).p > 0 then -store parent array

forj iIn 1..ver...graph.vergraph-ptr(i).p loop
put(fspec ,ver...graph .vergraph..ptr(i) .parentsoj),

width=>6);
end loop;

* end if;
if ver.gaph.vergrapb..ptr(i).c > 0 then -store child array

forji in 1..ver-graph.vergraph-ptr(i).c loop
put(fspec ,ver..graph .vergraph-ptr(i) .childrenoj),

width=>6);
end loop;

* end if;
end loop;

end STORE-VER.GRAPH;

procedure STORE-DER-GRAPH(fspec :in FILE-TYPE) is
-same as STORE-VER-.GRAPH, butu for derived graph

begin

put(fspec,der-.gaph.num-.el ,width=>6);
* ~for i In 1..der-.gaph.num-.el loop

put(fspec,der..graph.dergraph-.ptr(i).s,width=>6);
putline(fspec,der-raph.dergraph-ptr(i) .unit);
put(fspec,der-.Graph.dergraph-.ptr(i) .L-type);
put(fspec,det..graph.dergraph-.ptr(i) .version ,width => 6);
for j in 1..der-graph.dergraph-ptr(i).s loop

* ~put(fspec ,der-graph.dergraph.ptr(i) .source..arrayaj).
node,width=>6);

if der4raph.dergrapb-ptr(i). source..arrayj). .derived
then put(f spec ,'T');

else put(f spec ,'F');
end if;

* end loop;
end loop;

end STORE...DEILGRAPH;

procedure READ..VER-.GRAPH(f spec :in FILETYPE) is
-recovers version control graph stored in a text file and
-replaces the current graph with it

ch :CHARACTER; -for reading currency variables
*num...elmts :NATURAL; -for reading number of nodes in graph

p,c :NATURAL; -for reading parent and child counts
temp :NATURAL;

UNCLASSIFIED

UNCLASSIFIED GRAPILMANAGER Body 38

begin

-get the number of nodes in the graph
get(fspec,nunt..elmts,width=>6);

-allocate space for the node array
ver-.graph :=(num...elmts, new vgraph(1..num...elmts));
for i in 1. .ver-.graph.num-.el loop -get each node

get(fspec,p,width=>6);
get(fspec,c,width=>6);
ver-graph.vergraph-ptr(i) :new versioxtiiode(p,c);

my-.get~ine(fspec ,ver-.graph.vergraph-ptr(i) .fname,temp);
my-getJine(fspec,ver.graph.vergraph-.ptr(i) .unit ,temp);

my...getline(fspec,ver-.graph.vergraph...ptr(i).make-Jile,temp);
get(fspec ,ch);
if ch ='T' then ver-.raph.vergraph-ptr(i).currency :=TRUE;

elsever..graph.vergraph..ptr(i) .currency FALSE;
end if,
if p > 0 then

for j in 1..p loop
get(fspec,ver..graph.vergraph..ptr(i) .parentsoj),

width=>6);0
end loop;

end if;
if c > 0 then

for jin 1..c loop
get(fspec,ver..graph.vergrapb...ptr(i) .childrenoj),

width=>6);0
end loop;

end if;
end loop;

end REAILVEK..GRAPH;

procedure READJDERGRAPH(fspec :In FILE...TYPE) is
-same as above, except for derived graph

nunt.elmts :NATURAL;0
nun.src :NATURAL;
temp :INTEGER;
c :CHARACTER;

begin

-get the number of nodes in the graph
get(fspec,nunt-elmts,width->6);

-allocate array to hold the nodes
der-.graph :- (nunt.elmts, new dgraph(l..nun-elmts));
for i In 1..nunL-elmts loop

get(fspec,nunt..rc,width=>6);
der...graph.dergraph..ptr(i) :=new der..node(num...src);
my...getjine(fspec ,der-raph.dergraph..ptr(i) .unit ,temp);

UNCLASSIFIED

UNCLASSIFIED GRAPH-MANAGER Body 39

get(fspec,derraph.dergraph-ptr(i).Ltype);
get(fspec,der.graph.dergraph-ptr(i).version,width=>6);
for j in 1..nunsrc loop

get(fspec,dergraph.dergraph-ptr(i).sourcearray(j).
node,width=>6);

get(fspec,c);
if c = 'T' then der-graph.dergraph-ptr(i).

source.array(j).derived := True;
else dergraph.dergraph.ptr(i).

source-array(j).derived := False;
end if;

end loop;
end loop;

end READ_DER_GRAPH;

procedure MERGE (new-parent :in file-name;
child :in file-name) is

-This procedure calls MERGE to create a child unit that has
-the same unit and file names it had on entry. This allows
-MERGE to affect a node without changing its name.

begin

for i in reverse 1..ver..graph.numel loop
if ver._graph.vergraph-ptr(i).fname = child then

merge(new.parent, child,
ver-graph.vergraph-ptr(i).unit,
ver.graph.vergraph-ptr(i).fname);

return;
end if;

end loop;

end MERGE;

procedure MERGE (new-parent in file-name;
child in file-name;
new-unit.name :in unit-name;
new-file-name :in file-name) Is

-This procedure is used to "add" a parent to a specific node in
-the version control graph. The first file name identifies
-the node to be added as a parent, and the second file identifies
-the node to add the new parent to. This "child" node will
-be given the unit and file names specified by the last two
-arguments..

new.parent-node :INTEGER :=0;

child-node :INTEGER :0;
num-parents :INTEGER := 0;

UNCLASSIFIED

UNCLASSIFIED GRAPH-MANAGER Body 40

result :ver-node-.ptr;
new...parent-rec :ver-node..ptr;

begin

-find child node and new parent node
for i in reverse 1. .ver-.graph.nunL-el loop

if ver...graph .vergraph-ptr(i) .fname = new-..parent then
new...parent-node:=i

end if;
if ver-.graph.vergraph-ptr(i).fname = child then

child-node:=i
end if;
exit when new...paren-node > 0 and then child-.node > 0;

end loop;
-if both nodes found

if new-.parent-node > 0 and child-node > 0 then
-save num parents of child node

num-.parents :=ver-graph .vergraph-.ptr(chil&..node) .p;
-allocate and fill new child node

result :=new versioaiiode(num...parents + 1,0);
result.fnamne :=newjile.name;
result. unit: new...uni-name;
result. currency :=TUE;
for i in 1..num...parents loop

result.parents(i) :
ver-.graph .vergraph-ptr(child-node) .parents(i);

end loop;
result. parents(nunt.parents + 1) :=new...parent-node;
ver..graph.vergraph-ptr(chikldnode) := result;

-allocate and fill new node to replace parent
new...parent-rec := new versiolL-node(

ver-raph.vergrapL-ptr(new..parent..node) .p,
ver-.graph.vergraph...ptr(new-.parent-node) .c + 1);

new...paren-rec.unit :
ver..graph.vergraph..ptr(new..parent...node).unit;

new...parent-rec .fname :
ver-.graph.vergraph-ptr(new-.parent-node) .fname;

new...parent-rec .currency :
ver...graph.vergraph..ptr(new...parent-node) .currency;

for I In 1. .new..parent-rec.p loop
new...parent-rec .parents(l)

ver..graph .vergraph..ptr(new...parent..jode) .parents(l);
end loop;
for 1 in 1. .new-.paren-rec.c-1 loop

new...paren-rec.children(l) :=

en oo;ver..graph .vergraph...ptr(new-.parent-node) .children (I);

new-.parent-rec .children(new...parent-rec.c) :- child...node;
ver-.graph.vergraph..ptr(new..parent..node) := new-parent-rec;

end If;

end MERGE;

UNCLASSIFIED

UNCLASSIFIED GRAPH-MANAGER Body 41

function SETCURRENT(unitin :in uni tname;
file-in :in filename) return Boolean is

-This procedure finds two nodes: one corresponding to the
-current version of the specified unit, the second corresponding
-to the i'nd having both the given unit name and file nime.
-Provided it finds the second (this implies the first exists),
-it resets the currency flag of the first and sets that of the
-second, changing which file is considered "current" for,
-the given unit name.

file :file-name;
node :NATURAL;
new-node :NATURAL := 0;

begin

FINDCURRENT(unitin, file, node); -find first node
for i in reverse 1..ver-graph.num-el loop -search for second node

if ver.graph.vergraph-ptr(i).unit = unit-in and then
ver-graph.vergraph-ptr(i).fname = file-in then

new-node :=i;
end if;

end loop;
if new-node > 0 then -if second node found

ver-graph.vergraph.ptr(node).currency := FALSE;
ver.graph.vergraph-ptr(newnode).currency :- TRUE;
return True;

else
return False;

end If;

end SET-CURRENT;

end GRAPH-MANAGER;

GRAPHS Package (graphs.a):

with MY..STRINGS;

use MY_.STRINGS;

package GRAPHS is

type parent-array is array (NATURAL range < >) of NATURAL;

subtype child-array is parent-array;

-Type declarations necessary for version control graph:

UNCLASSIFIED

UNCLASSIFIED GRAPHS Package 42

type version-node (p,c :NATURAL) Is record
fname :file-name - (others =>
unit :unit-name - (others =>
currency :boolean FALSE;
make-file :m'na!:e_file_nqme (others => '
parents :parent-array(1..p);
children :child-array(1..c);

end record;

type ver._node.ptr is access version-node;

type vgraph Is array (NATURAL range <>) ofver.node-ptr;

type vgraph-ptr is access vgraph;

type ver-graph-rec is record
num-el :NATURAL:= 0;
vergraph-ptr :vgraph_.ptr;

end record;

-Type declarations necessary for derived unit graph

type source-rec is record
node :NATURAL :=0;
derived :Boolean False;

end record;

type s.array is array (PosrIvE range < >) of source.rec;

type der-node (s :NATURAL) is record
unit :unit-name (others =>'");
f-type :CHARACTER 6) ;

version :POSITIVE 1;
source.array :s-array(1..s);

end record;

type der.node-ptr is access der-node;

type dgraph is array (NATURAL range < >) of der-node-ptr;

type dgraph..ptr is access dgraph;

type der-graph-rec Is record
num_el :NATURAL:= 0;

dergraph-ptr :dgraph-ptr;
end record;

-Variables to hold main data structures:
ver-graph :vergraph-rec;
dergraph :der-graph-rec;

UNCLASSIFIED

UNCLASSIFIED GRAPHS Package 43

end GRAPHS;

UNLSSFE

UNCLASSIFIED 44

B.2. MAKEPROCS Package

BUILD.MAKESTRUCT(make-file)-This function takes as its argument a make-file name, and
builds a data structure containing all of the useful information in the make-file for the purposes
of MAKE. It returns a boolean value that is True if the file was successfully read without any syn-
tax errors.

MAKE-Called after BUILDMAKESTRUCT. It uses the information in MAKESTRUCT (a global 0
data structure generated by BUILDMAKESTRUCT) to generate derived files from source files and
other derived files.

MAKEPROCS Package Specification (make.procs.a):

with MYSTRINGS;
use MY-STRINGS;

package MAKEPROCS is

MAKE-FAILED: exception;

function BOILDMAKESTRUCT (make-file :in makejfilejname)
return Boolean.

procedure MAKE;

-Exceptions for this package: 0

MAKE.FILESYNTAX :exception;

end MAKEPROCS;

MAKE.PRo S Package Body (makeprocs.b.a):

with TEXT.O, GRAPH-MANAGER, FILE._UTIL, GRAPHS, ARCTGLOBALS,
MAKEUTIL, INTIO, COUNTO, ASTRINGS, UNX__PRCS;

use TEXT-IO, GRAPH-MANAGER, FLEUTIL, GRAPHS, 0
MAKEUTIL, INTJO, A-STRINGS;

package body MAKE_.YROCS Is

-Type declarations 5

-Type declarations necessary for MAKESTRUCT

type dependencyrec is record
unit :unit.name;
Ltype :CHARACTER; S
excludeJist :largevstring;

end record;

UNCLASSIFIED

UNCLASSIFIED MAKE,_PROcs Package Body 45

type dependency-array is array (POSITIVE range < >) of dependencyrec;

type dependencylist-rec(dp :POSITIVE) is record
unit :unit-name;
Ltyp. :CHARACTER;
dependencylist :dependency.array(1..dp);
build-proc :xlarge.vstring;

end record;

type dependencyptr is access dependencylist_rec;

type dependency.ptr-array is array (POSITIVE range < >)
of dependency-ptr;

type make-struct-rec(num-deps :POsITIVE) is record
dependencies :dependency-ptr.array(1..num-deps);

end record;

type make-structure is access make-struct-rec;

-Types necessary for keeping array of changes discovered
- in the MAKE process

type change-record is record
unit :unit.-name;
f-type :CHARACTER;
changes-discovered :Boolean:= False;
changejlist :large-vstring;

end record;

type change-array-type is array (POSITIVE range < >) of change-record;

type changearrayptr is access change.array.type;

-Type used to hold definitions of extensions used in make files

type ext.array is array ('A'..'Z') of STRING(1..3);

-Global variable declarations:

-Global variables used to store changes that are discovered
- by MAKE

UNCLASSIFIED

UNCLASSIFIED MAKEPROCS Package Body 46

change-array :changearray.ptr;
len-change-array :NATURAL;

-Variables used in parsing make files:
line-buffer :largevstring;
line-index :POSITIVE := 1;
objbuffer :unitname;
object-type :CHARACTER;
make-struct :make-structure;
name-buffer :unit.name;
name-type :CHARACTER;
word-delim :CHARACTER;
extensions :ext-array;

--procedure and function declarations:

procedure UPPERCASE(s. in out string) is
begin

for i in s'first..s'last loop
if s(i) >= 'a' and then s(i) <= 'z' then

s(i) := character'val(character'pos(s(i)) - 32);
end If;

end loop;
end;

procedure MYGET_LINE(fspec : in FILE-TYPE; item : out STRING;

last : out NATURAL) is

-This procedure emulates the TEXT-1O procedure GET-LINE
-It was necessary to write this because the MicroVaxII's
-predefined GET-LINE acts differently than it should.
-This procedure provides the appropriate results and is
-compatible with the 8600's Ada.
-This routine isn't completely fool-proof, but it does the job

result : string (item'first..item'last) := (others => '

count : natural := 0;

begin

while not end-of-Jine(fspec) loop -loop until end of line
count := count + 1;
get(fspec,result(count));

end loop;
skipJine(fspec);
item := result;
last := count;
return;

UNCLASSIFIED

UNCLASSIFIED MAKEPROCS Package Body 47

end MYGET-LINE;

function VSTRINGNAME return vstring is
-This function operates on the global variable NAME-BUFFER
-for the BUILDMAKESTRUCT procedure. It allows unit names
-(actually excludable change types in a make file specification)(
-to be treated as vstrings for "+" concatenation purposes

result :vstring;

begin

-first, make sure name-buffer isn't empty,
if name-buffer(I) = then return(O,(others => '')); end if;

-if it's not, find its length and put it in RESULT
for i in 1..unit-nameJen loop

if name-buffer(i) ='" then
result.str(1..i-1) := name-buffer(1..i-1);
result.len := i-1;
exit;

end if;
end loop;
return result;

end VSTR1NGNAME;

procedure GET_WORD(fspec :in FILE-TYPE) is
-This is a custom word-oriented input routine for use
-in BUILDMAKESTRUCT. DELIM contains a character table
-used to differentiate between ASCII data characters
-and delimiters in the input. The word read is placed
-in the global variable NAME-BUFFER, and the delimiter
-which terminates it is placed in the global variable
-WORDDELIM. If a special delimiter (":", ";", or
-is encountered before a data character, input halts immediately
-(This allows for the detection of these characters as(
-separators without considering them to be data characters).
-If a name is found which is delimited on the right by a

".", the "extension" (character after the ".") is returned"
-in the global variable NAME-TYPE. The only exception is
-if the first character in a name is "/"-then "" is returned
- as the NAME-TYPE.

typeflag :Boolean False;
namejen :INTEGER 0;
c :CHARACTER;

delim :constant array (0..127) of boolean :=

(True, True, True, True, True, True, True, True,

UNCLASSIFIED

UNCLASSIFIED MAK&-PRocS Package Body 48

True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True,

True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, False,
False, False, False, False, False, False, False, False,
False, False, True, True, True, True, True, True,
True, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, True, True, True, True, False,
True, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, True, True, True, True, True);

begin

get(fspec,c); -get first char
while delim(CHARACTER'POS(C)) loop -strip leading delim's

ifc =';' or c ':' or c = '=' then -unless they're
word-delim c; - "special"
name-buffer := (others =>'");
return;

end if;
get(fspec,c);

end loop;
if c = '/' then -if first legal char is "/"

name-type c; -set NAME-TYPE
typeflag :=True;
get(fspec,c); -and get next char

end if;

for i in 1..unit-nameJen loop -add to name until no more room
name-buffer(i) := c; -place in buffer
if endoUine(fspec) then -if EOL, then end of name

namejlen i;
exit;

end if; e

get(fspec,c); -otherwise, get next char,
if delim(CHARACTER'POS(c)) then--if it's delim, then end of name

namejlen := i;
word-delim := c;
exit;

end if; e

end loop;
-once you've got the name, blank remainder of name-buffer

name-buffer(nameJen+l..unit-nameJen):f (others => ");
If c = '.' then -if word delim'ed by "

get(fspec,c); -get NAMETY,7,E

name-type :- c;
typeflag := True;

elsif not typeflag then -otherwise, reset NAMETYPE,

UNCLASSIFIED

UNCLASSIFIED MAKEPROCS Package Body 49

name-type :f''"
end If;
return;

exception -if EOF encountered, just return blanks

when end-error =>
name-buffer := (others =>'");
return;

end GET-WORD;

procedure GET(fspec :in FILETYPE; build.proc :in out xlarge.vstring) is
-This is another custom input routine for BUILDMAKESTRUCT.
-It is used if a construction procedure is specified in the
-make file. It reads in the construction procedure for
-storage in the make data structure (type xlarge.vstring
-is only used to hold make construction procedures).

c :CHARACTER;

delim :constant array (0..127) of boolean

(True, True, True, True, True, True, True, True,
True, False, True, True, True, True, False, True,
True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True,

False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, True, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, True);

begin

get(fspec,c);
-strip leading delim's and spaces:

while delim(CHARACTER'POS(c)) or else c =' loop
get(fspec,c);

end loop;
-fill xlarge.vstring:

for i in 1..xlslen loop
build-proc.str(i) := c; -insert char into build.proc
If end-oUine(fspec) then -if EOL, insert a CR into build-proc

UNCLASSIFIED

UNCLASSIEMD MAKE-PROCS Package Body 50

c: ascii.cr;

eleskip.jine(fspec);

get(f spec ,c);
end If;
if delim(CHARAcTER'POS(c)) then -if its a delim (";"), then

build-proc.len i; -then end the buikldproc
exit;

end If;
end loop;

-blank out rest of buikldproc and the name-..buffer
build-proc.str(build-proc.len+l..xlslen) :=(others =>')
namie-.buffer :=(others = >')
return;

exception

when end-error => -if EOF, just return

return;

end GET;

procedure NEXT...WORD(source :in out large...vstring;
wc-buffer :out vstring) is

-This procedure splits a large..vstring into a vstring
-containing the first' ' delimited word in the input
-large..vstring, and a large..vstring containing the remainder,
-of the input. On return, SOURCE contains the remainder,
-and WD..BUFFER contains the first word in SOURCE on entry.

result :vstring; -temporary storage for wd-buffer
ptr :Posrrlv; -pointer into SOURCE

begin

ptr :=2; -first character in SOURCE to look at
-find the end of the first word

while source.str(ptr) I- and ptr <= source.len loop
ptr :-ptr + 1;

end loop;
-set result equal to first word

result.str(l..ptr - 1) :=source.str(1..ptr - 1);
result.len :-ptr - 1;

-set source equal to remainder
source. str(L..source.len-ptr+1) := source. str(ptr.. source.len);
source.len :=source.len - ptr + 1;
wd-buffer :=result;

return;

end NEXT-WORD;

UNCLASSIFIED

UNCLASSIFIED MAKEPROCS Package Body 51

function TRANS_.BUILDPROC(node :NATURAL) return xlarge.vstring is
-This function takes as input a node in the MAKE.STRUCT
-and processes its construction procedure for output.
-it searches the construction procedure for names of the
-form { name & "." & alpha-character & delimiter }, where
-name is a sequence of non-delimiting characters. If such
-a sequence is found, it is replaced by its "translation"
-in the output. This translation is produced by the following
-rules: if the alpha extension is 'a', the version control:
-graph is search for the current node for the unit
-"name", held in the variable CURRENTNAME. The file name"
-associated with this node is used to replace the string
-representing it in the contstruction procedrure. If the
-"extension" is any other letter, the list of defined extensions"
-in the global array variable EXTENSIONS is consulted. If
-the single charater extension is defined, it is used to replace
-the single letter extension in the output. If no known
-expansion for the sequence is found, it is passed unchanged
-to the output.

c :CHARACTER;
result :xlargevstring;
state :boolean := False;
currentname :uniLname;
currentLtype :CHARACTER;
name-ptr :NATURAL;
i :NATURAL:=1;
temp :integer;
filel :file-name;
dpnode :NATURAL;
current-ext :string(1..3) :=" ".

delim :constant array (0..127) of boolean

(True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True,

True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True,
False, False, False, False, False, False, False, False,
False, False, True, True, True, True, True, True,
True, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, True, True, True, True, False,
True, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, True, True, True, True, True);

begin

UNCLASSIFIED

UNCLASSIFIED MAK&.PRocs Package Body 52

-I points into the source construction procedure
-STATE is a boolean which is true iff the last character
- tested was part of a name sequence 0

while i<make-struct.dependencies(node).buildproc.len loop
-if not looking at a name

If not state then
-if its a delimiter, pass it on

if delim(character'pos(
make-struct.dependencies(node).build.proc.str(i))) then 0

result.len := result.len + 1;
result.str(result.len) :=

make-struct.dependencies(node).build.proc.str(i);
else -if its a name character, change STATE

name-ptr := 1;
current-name(name-ptr) :

make.struct.dependencies(node).build.proc.str(i);
state := True;

end if;
else -in 1!e name STATE

-if a delim is encounter in STATE:
if delim(character'pos(

make.struct.dependencies(node).buildproc.str(i))) then
-first, change STATE:,

state := False;
-check for substitution conditions:

if make-struct.dependencies(node).build-proc.str(i)=
and then not delim(character'pos(makestruct. -
dependencies(node).build.proc.str(i+l))) and then
delim(character'pos(make-struct.
dependencies(node).build.proc.str(i+2))) then

-blank out remainder of name
current.name(nameptr+1..unit.nameien)

(others =>' ');

-get "extension" character
currentftype :-

make-struct.dependencies(node).build-proc.str(i+l);
i:= i+ 1;

-if "extension" is an 'a'
if current.fLtype = 'a' then 0

find-current(currenLname,filel,temp);
if temp > 0 then -if node found

-strip file name and use it instead
for I In 1..filenamelen loop

If filel(l+1) -'" then
result.str(result.len+l..result.len + -I):- filel(L..);
result.len :- result.len + 1;
exit;

end if;
end loop;

else -if node not found, send name on
result.str(result.len+l..result.len +

name.ptr) :- current-name(1..name.ptr);

UNCLASSIFIED

UNCLASSIFIED MAK&-PROCS Package Body 53

result.len :=result.len + name-ptr;
result. str(result.Ien + 1)

* result. str(result.len + 2) :=currentLLtype;

result.len :=result.len + 2;
end if;

else -if "extension" not 'a'
-get three-letter expansion:

-if (currentLjype >=W'a) and
* ~- (currentLtype <= Yz) then

- currentLLtype := CHARACTER'VAL(CHARACTER'POS(
- currentLLtype) - 32);
-end if;
-current-ext := ext ensions(curren-Lype);

-if three-letter version is defined:
* if not delim(character'pos(current-ext(1))) then

result. str(result.len+1. .result.len +
name..ptr) : = current..name(1. .name..ptr);

result.len :=result.len + name-.ptr;
result.str(result.len + 1) :=.;
result.str(result.len + 2..result.len + 4)

* current-ext;
result.len := result.len + 4;

else -if three-letter version not defined,
-just pass name on to output:

result. str(result.len+1. .result.len +
name..ptr) :=current..name(l. .name..ptr);

* result.len :=result.len + name..ptr;
result. str(result. len + 1) :'*'

result. str(result.len + 2) :=currentLLtype;

result.len := result.len + 2;
end if;

end if;
* else -if no substitution, just sendnamne on

result. str(result.len + 1. .result.len+name..ptr)
current-name(1 .name-ptr);
result.len := result.len + name..ptr + 1;
result. str(result .len) := niake-.struct.dependencies(

node) .build-proc .str(i);
* end if;

else -another name char while in STATE
-just add to the name:

name-ptr := name-ptr + 1;
current-name(name..ptr) :

make...struct.dependencies(node) .build-proc .str(i);
* end if;

end If;
i := i+;

end loop;
return result;

* end TRANS..BUILD-PROC;

UNCLASSIFIED

UNCLASSIFIED MA4K&PRocs Package Body 54

procedure BUIL D JT (i :in POSITIVE; current-der-.node :in NATURAL;
current-version :in POSITIVE) is

-This procedure is called by MAKE if a derived unit0
-needs to be constructed. The input variable I points
-to the node of the unit in the MAKE-STRUCT, while current-version
-holds the version-.number the new derived unit should
-have..

temp :INTEGER;
file2 :file...name;
dp :POSrrlv;
result :der...node..ptr;
build-proc :xlarge...vstring;
cmd-line :a-.string := empty;

ada..Jink :constant a-..string to...a("csh -c echo Id")
obj...extension :constant string .obj"
exe...extension :constant string .exe "

begin

-first, DP=number of units the one to be constructed,
-depends on:

dp :=make...struct.dependencies(i).dp;

-create a new derived node for the newly constructed unit
result := new der...node(dp);

-set up the child array of the newly allocated
-derived node by repeating the following for each dependency:

for j in 1..dp loop
-if the dependency is on a source file,

if make..struct .dependencies(i) .dependencyJistaj).
Ltype = 'a' then

-find fie name of current file for that unit
find-current(make..struct.dependencies(i).

dependencyJistj) .unit,file2,
temp);

-set this element of derived node's child array
result. source..arrayo).node := temp;
result. source..arraya).derived := False;

else -dependency is on another derived node
-find most recent version of the derived node
- it depends on, and set elements of child array

for m in reverse 1..der-.graph.nun-el loop
if der...graph.dergraph-.ptr(m) .unit=

make-.struct.dependencies(i).
dependencyJistoj).unit then

result. source-.arrayaj).node :=m;

result. source-.arrayj). .derived := True;
eit;

end If;

edI;end loop;

end loop;

UNCLASSIFIED

UNCLASSIFIED mAKE-PRocs Package Body 55

-now put the other relevant info into the new derived node
result.unit := make...struct.dependencies(i) .unit;

* result .Ltype : ake...struct.dependencies(i) .Ltype;
result.version := current-version;

-enlarge derived node array
ADD-TO-.DER..GRAPH;

-insert the newly created derived node
der-.graph.dergraph-ptr(der-.gaph.nunt.el) :=result;

* -if the derived node is not a passthru node:
if make...struct.dependencies(i)Ltype /= "'then

-if the derived unit doesn't have a construction procedure
if make..struct .dependencies(i) .build-proc.len = 0 then

-if it's an EXEC file (type='e'), then link all
-of its dependents of type 'o together

* if make..struct.dependencies(i).Ltype = Ve then
-for a.ld interface,
-build cmd-line and use unix...prcs.spawn
cmd-Jine := ada-jink;
for k in 1..dp loop

if make..struct .dependencies(i) .dependencyiist(k).
* Ltype =V'o then

cmdJine := cmd-line &
trimn(make...struct.dependencies(i).
dependencyJist(k) .unit) & obj...extension;

end If;
end loop;

*cmd-jine :=cmdJine & "-o " &
trim(make...struct.dependencies(i) .umt) & exe-.extension;

putline(cmd-jine.s);
if unix...prcs.spawn(cmdJine) /= 0 then

raise MAKE-FAILED;
end if;

*else -for any other type, send its first dependent
-through the Ada compiler:

cmd-Jine := ada...compile;
for k in 1..dp loop

If make..struct .dependencies(i) .dependencyJist(k).
Ltype /-' 'then

* ~find-current(make-.struct.dependencies(i).
dependencyJist(k).unit,file2,temp);

cmd-Jine := cmd-line & trim(file2);
-putJine (trim(file2));

-put("Unit:'");(
-put(trim(make..struct.dependencies(i).(

* - dependencyJist(k) .unit));
-putJine("Y"); (
-put("File:'");(
-put(trim(file2));(
-put.Jine("'");(
-put("Node:");(

* -put(temp);(
-putJine("");(
-put("Total Nodes:");(

UNCLASSIFIED

UNCLASSIFIED MAKE..PROCS Package Body 56

-put(ver..graph.numel);(
-put.line("");(

exit; 0

end if;
end loop;
putJine(cmdjine.s);
if unix-prcs.spawn(cmdJine) /= 0 then

raise MAKE-FAILED;

end if; •
end if;

else -if it has a construction procedure, translate it:
-putJine(Beginning TRANS_BUILD_.PROC...");(
-build._proc := trans-build.proc(i);
-putJine("... TRANSBUILDPROC completed successfully.");(
putJine(build.proc.str(1..build.proc.len)); 9
if unixprcs.spawn(toa(build.proc.str(1..buildproc.len)))/=

0 then
raise MAKE_FAILED;

end if;
end if;

end if;

end BUILD-IT;

procedure MAKE is
-This procedure is driven by the MAKESTRUCT data
-structure. Given that structure, it determines.
-which of the MAKE.STRUCT nodes need to be constructed.

word :vstring;
build-flag :Boolean;
changelst :largevstring;
excludelist :large.vstring;
k :POSITIVE;
total-changes :large-vstring;
current-dernode :NATURAL;
current-version :NATURAL; 9
current-source :NATURAL;
current-derived :Boolean;
file2 :file.name;
archive-file :file.name;
temp :INTEGER;
tempstr :string(1..6);
ret-code :integer := 0;

function "&(l : in a-string; r : in file-name) return file-name is
result : file-name;

begin if I/= empty and then 1/= null and then l.len /-0 then
result(1..l.len) := l.s;
result(l.len + 1) := '/';

UNCLASSIFIED

UNCLASSIFIED MAKE_.ROCS Package Body 57

result(l.len + 2..result'last) := r(1..r'last - l.len - 1);
return result;

else
return r;

end if;
end "&";

begin

-repeat this process for each node in MAKESTRUCT
for i in 1..makestruct.num-deps loop

build.flag := False; -reset construction flag
total-changes.len 0;
current-der-nodc 0;
current-version := 0;

-search for the previous version of this derived unit
If der.graph.nunx-el > 0 then

for j in reverse 1..der-graph.numel loop
if der-graph.dergraph-ptr(j).unit =

make.struct.dependencies(i).unit and then
der-graph.dergraph-ptra) .Ltype =
make.struct.dependencies(i).Ltype then

current-der-node := j;
current-version - der-graph.dergraph_.ptr(j).version;
exit;

end if;
end loop;

end if;
-If there is no previous version, then set the const. flag

if current-dernode = 0 then
build-flag True;

end if;
-If const.flag still false
-(or it's a passthru node (signified by type=''))(

if build-flag = False or else
make.struct.dependencies(i).Ltype =' 'then

-check each of its dependencies for changes:
for j in 1..make.struct.dependencies(i).dp loop

-first, find the corresponding element in the,
-the change discovery array

k:=1;
while (changearray(k).unit /= make.struct.dependencies(i).

dependencyJist(j).unit) or else
(change-array(k).Ltype /- makestuct.dependencies(i).
dependencyjist(j).Ltype) loop
k :=k+1;

end loop;
-If the changes haven't been discovered yet:

if not change.array(k).changes.discovered then
current-source :- 0;

-if previous version found in the derived graph
if current-der..node > 0 then

-then search the previous version's dependents

UNCLASSIFIED

UNCLASSIFIED MAKEPROCS Package Body 58

-to find the one corresponding to this dependency
for I in 1..der-graph.dergraph-ptr(current-der-node).s

loop
if der-graph.dergraph-ptr(

current..der-node).source-array(l).derived then
If der-graph.dergraph-ptr(der-graph.dergraph.ptr(

current-der-node) .source-array(l).node
).unit = change-array(k).unit and then
der.graph.dergraphptr(der..graph.dergraphptr(
currentder-node) .source.array(l).node
).Ltype = change-array(k).fLtype then

current-source := der..graph.dergraphptr(
current-der.node).source-array(l).node;

current-derived := True;
exit;

end if;
else

If ver-graph.vergraph-ptr(der.graph.dergraph-ptr(
current-der-node) .source-array(1).node
).unit = change-array(k).unit then

current-source := der.graph.dergraph-ptr(
current-der-node) .source-array(l) .node;

current-dcrived := False;
exit;

end if;
end If;

end loop;
end If;

-if previous dependency not found,
if current-source = 0 then

-if there was a previous derived node
if current-der..node > 0 then

-the changes must be stored
for I in 1..len__change.array loop

If changearray(l).unit =
der-graph.dergraph-ptr(
current-dernode).unit then

change-lst := change-array(l).changejist;
If I >= k then raise MAKE.FILESYNTAX; end If;
exit;

end if;
end loop;

else -there is no previous dependency
changeJst.str(1..7):= "GENERAL";
change-lst.len := 7;

end if;
else -previous dependency found

-then, if it was a derived dependency,
If current-derived then

-see if there is a more current version
-of the node depended on

changeJst.len :- 0;
for m in reverse current-source+l..

UNCLASSIFIED

UNCLASSIFIED mAKE.YRocs Package Body 59

der-.graph.nunt.el loop
-if there is a more recent node,

* -then signal "general" so unit
-will be constructed

if der-raph.dergrapt..ptr(m). unit -
der..graph .dergrap&..ptr(current-source).unit
and then der...graph.dergraph...ptr(m).Ltype =

der-graph .dergraplt..ptr(current-source) .Ltype
* then

changeJst.str(1. .7) := "GENERAL";
change.Jst.len :=7;
exit;

end if;
end loop;

* -if control makes it this far, then there is no
-new version, and the old derived node will

-sufficeelse -if dependency is on a source file
-compare the current version of the
--given source file with the one the

* -previous derived node depended on:
find-current(change..array(k).unit,

fle2,temp);
change.Jst := changes(file2,

arct-globals.source..archive &
ver..gap.vergrapk..ptr(current-source).fname);

* end if;
end if;

-store changes in change array for later use
change..array(k) .changelfist := changeist;
change..array(k) .changes-.discovered : =True;

else changeJst := change-.array(k) .changeJist;
* end if;

exclude-fist :- make...struct.dependencies(i).
dependencyJistj) .excludeJist;
-subtract each word in exclusion list from the change list

while excludejfist.len > 0 loop
nexu-word(excludejist,word);

* changeJst :- changeJst - word;
end loop;

-accumulate total changes
total-changes := total-changes + changeJst;

-if there are any changes, then set the const. flag
If changeJst.len > 0 then

* buiklflag := True;
If make...struct.dependencies(i) .Ltype 1= then

exit;
end if;

end If;
end loop;

* end if;
-if its a passthru node

if make...struct.dependencies(i).Ltype = then

UNCLASSIFIED

UNCLASSIFIED MAK&-PROCS Package Body 60

-find the corresponding passthru node slot in
-the change array and save the total changes there

for kk in 1..len.changearray loop
if change.array(kk).unit = make.struct.dependencies(i).unit

and then change.array(kk).f.type =

make-struct.dependencies(i).Ltype then
change-array(kk).change.list := total-changes;
changearray(kk).changesdiscovered :=True;
exit;

end if;
end loop;

end if;
-construct unit, if necessary

if build.flag then
-putjine("Beginning BUILDJT...");(S
build it(i, current-der-nodP, current-version + 1);
-putJine("... BUILD-IT successfully completed.");(

end if;
end loop;

end MAKE; 0

procedure GETEXTENSIONS(buf :in unit-name;
current-make-file :in FILE-TYPE) is

-This proc is called if a make file starts of with some
-extension definitions. It saves all of the extension
-definitions in the global array EXTENSIONS for later use in
-translating construction procedures.

tempname.buf :unit-name := buf;

begin

-putline("Begin GETEXTENSIONS...");(
if temp.name-buf(1) ='" then

temp.name.buf := name-buffer;
get-word(current-make-file);

end if;
if name-buffer(l) = then

if word-delim - '=' then
get-word(current-make-file);

else raise MAKEFILESYNTAX;
end if;

end If;
loop

-put("current character:'");(
-put(temp.name.buf(1));(
-putline("'");(
if tempname.buf(l) > 'a' and temp..name.buf(1) <= 'z' then

-put("change to ASCII value:");(
-put(CHARACTER'POS(temp-name-buf(1)) -32);(

UNCLASSIFIED

UNCLASSIFIED mAK&-PRocs Package Body 61

-put-ine(""));(
temp-..name-buf(l): CHARACTER'VAL(CHARACTER'POS(

temp..name..buf(1)) -32);
end if;
extensions(temp-njame..buf(1)) :=name..buffer(1. .3);
if word-delim = ';' then exit; end If;
get-word(current-nake..file);
temp-.name-.buf name-buffer;
if word~delim = ''or wor&..delim =''then

raise MAKEJFILE-SYNTAX;
end If;
get-word(current-make.Jile);
if word-delim = '=' and name..buffer(l) ='then

get.wNord(currcnt-makejfile);
* end if;

end loop;
get-word(current-nake.Jile);
If word...delim /= ' :' then

temp...namebuf :=name-buffer;
get-word(current..make-file);

* if word~delim /= ':' then
raise MAKE-JILE-SYNTAX;

else name-buffer: temp...name-.buf;
end if;

end if;
return;

end GET-..EXTENSIONS;

function BUILD2_4AKESTRUCT(make-file :in make-ile-.name)
* return Boolean is

-This procedure takes a file name as input, and opens the file,
-parsing it to create MAKE...STRUCT.

temp-naame..buf :unit...nane;
temp-dep :dependency..ptr;

* old-emp..dep :dependency..ptr;
temp..exjlist :large...vstring;
current-nakejfile :FETYPE;
j :POSITIVE;
temp..make...struct :make..structure;
nun-deps :natural :- 0;

P temp...count :COUNT;

begin

len-.change-..affay :=0;
open(current-nake-ileN-FyaE,trim(make-file));

S ~make...struct :- new make..struct..rec(1);
while not end...of-file(current-make-file) loop

-save old niake..struct in temporary variable

UNCLASSIFIED

UNCLASSIFIED mAK&-PRocs Package Body 62

-putjine("Beginning B-vLS loop..");(
temp..make..struct :=make...struct;
nunL-deps :=nunt-deps + 1;

-allocate new make-struct
make..struct :=new make..struct-rec(num..deps);

-copy old make..struct into new
for i in 1. .num-deps-1 loop

make-struct.dependencies(i)
temp...make...struct.dependencies(i);

end loop;
-get the name of the next derived unit to "make"

get-word(current.make-Jile);
temp...name-.buf :=(others =>')

-make sure it is a "make" clause
if word...delim /= ':' then

-if its an extension def, call get-..extensions
-putline("Testing for extensions...");(
if word-delim = '=' then

get-extensions(temp-name-buf,current-makelile);
else

temp...name-buf :=name-.buffer;
get..word(current...make-file);
if word-.delim /= ':' then

get-extensions(temp..name-buf,cufrent-make-file);
else namejbuffer: temp...name-buf;

edi;end if;

end if;

obj...buffer :=name-buffer;
object-type := name-type;
get-word(cuff ent..make-file);
If nameJ.buffer(l) =' 'then

raise MAKE-JILE..SYNTAX;0
end if;
j =1;

loop
old-emp-.dep :=temp-.dep;

temp-.dep :=new dependencyJist-recoj);
if j > 1 then

temp-.dep.dependencyjist(l. .j-1)
okldtemp..dep .dependencyiist;

end if;
temp-.dep.dependencyJistaj).unit :=namie-.buffer;
temp-dep .dependencyjistaj) .Ltype := name-..type;
temp...exJist.len :=0;
If end-of-file(current-make..file) then exit; end if;
If word...delim = ';' or else word..delim = ':' then exit; end if;
get-word(curr ent-makeifile);
If name-buffer(1) -=' 'then

end if;ext
while name-..type = 'I' ool

temp-.ex-list :=temp--.xJist + vstring-name;

UNCLASSIFIED

UNCLASSIFIED MAKFd'ROCS Package Body 63

if endLoflfle(current-make-file) then exit; end If;
if word~delim =''or else word...deli =': then

* exit;
end If;
get-word(current-make-file);
if name..buffer(1) ='then

exit;
end if;

* end loop;
teinp.exJist.str(temp-sxiist.len + 1..lslen):

(others => '');
upper..case(tempecxJist-str(l..temp..exJist.len));
temp-d.ep.dependncyiistoj).exclude-list :=temp...ex-list;
if word-deiim = ';' or else word-delim =':' then

* ~~If name..type =' or else nanie.buffer(1) ~= then
exit;

end if;
end if;
j := j + 1

end loop;
* leciihange-.array :=lea-change..array + j

temp-dsep.unit :=obj-buffer;
temp-dep .Ltype:= object-type;
if word...delimt = ':' then

get(current-make-ile,temp.dep.build..proc);
end If;

* make-struct .dependencies(nunt..deps) :=temp-dep;
end loop;
change-array :- new change..array..type(1. .lcn-change..array);
j := 1;
for i In l..make-struct.num-deps loop

for k In 1..make-struct.dependencies(i).dp loop
* change-arrayo) .changes..discovered :- False;

change-arrayoj).unit :
make-struct. dependencies(i). dependencyiist (k). unit;

change...array(j).fjtype :
make-struct .dependencies(i) .dependency.jist(k) .Ltype;

change...arrayj) .changeJist len :- 0;
* j :-j + 1

end loop;
end loop;
close(currcnt-make-file);
return True;

*exception -if there is a syntax error in the make file,
-issue appropriate diagnostics

when MAKE-.E.SYNTAX =>

lemp-count := line(current-make.file);
countio.put(temp-name-buf(I ..3),tcmp-count);

* put("Syntax FLrror in make file near line")
put(temp..name~buf(I. .3)&", column ");
tcmp-count := col(current-make-iie);

UNCLASSIFIED)

UNCLASSIFIED MAKEPROCS Package Body 64

count-io.put(temp-nameibuf(1..3),temp-count);
putline(temp_.name-buf(1..3)&".");
return False;

end BUILDMAKESTRUCT;

-initialization for package GRAPHMANAGER:

begin

-clear extension definitions
for i in 'A'..'Z' loop

extensions(i):= "

end loop;
-add predeifined extensions:
extensions('o') := "obj";
extensions('E') := "exe";

end MAKEPROCS;

MAKEUTIL Package Specification (make.util.a):

with MY-STRINGS;
use MY-STRINGS;

package MAKEUtrIL is

-This package contains one function, CHANGES, which compares
-two Ada source files to detect changes. It returns the
-changes in a large.vstring.

function CHANGES(filel,file2 :in file-name) return LARGE..VSTRING;

procedure GETNEXTWORD(line :in STRING; index :in out NATURAL;

word :in out STRING);

end MAKEUTIL;

MAKEUTIL Package Body (make-utll.b.a):

with FILEUTIL,TEXT_1O,MY.STRINGS;

use FILEUTIL,TEXTJO,MYSTRINGS;

UNCLASSIFIED

UNCLASSIFIED MAKEUTL Package Body 65

package body MAKEUTIL is

-global variables used in this package:
-the buffers are used to hold input characters from the
-two source files being scanned for changes;
-QUOTE is a boolean flag that signals whether or not the current
-character position in the input file is inside quotes or not.

buffer1, buffer2 :buffer;
quote :Boolean;

procedure GETC(buff :in out buffer; fspec :in FILE-TYPE) is
-This is the basic character input function used for scanning
-a single input file. It places the character it reads
-in the specified buffer structure, after changing to
-upper case if necessary. This is used primarily by
-CONTSCAN, when the two files are found to differ and,
-must be scanned separately until the next change-type
-is discovered.

c :CHARACTER;

begin

get(fspec,c);
if c='"' then quote := not quote; end if;
if not quote and then c > = 'a' and then c < = 'z' then

c := CHARACTER'VAL(CHARACTER'POS(C) - 32);
end if;
buff.str(buff.bpos) := c;
buff .bpos := buff .bpos mod slen + 1;
return;

end GETC;

procedure COMPC(fspecl,fspec2 :in FILETYPE; test :out boolean) is
-This procedure is the character level input routine used
-by CHANGES- it inputs a character from 2 separate files,
-changing to upper case if necessary, and compares them.
-it returns the value of this comparison in TEST.

cl,c2 : CHARACTER;
cl-white : boolean := false;
c2_white : boolean false;

begin

-get char from first file
while endoUine(fspecl) and not end-of-file(fspecl) loop

skipJine(fspecl);
end loop;

UNCLASSIFIED

UNCLASSIFIED mAK&-uTI Package Body 66

If not end....ofile(fspecl) then
get(fspecl ,cl);
if cl " 'or ci = ASCH.HT then6

clwhite:=tu,,
bufferi.str(bufferl.bpos) ='

bufferi.bpos := bufferl.bpos mod slen + 1;
while (not end-of-file(fspeci)) and then

(not end-oUine(fspecl)) and then
(cl = ' ' or ci = ascii.ht) loop6
get(fspecl,cl);

end loop;
if ci ascii.ht then ci ''end if;

end if;
else

ci:''
end if;

-change to UC if not in quotes
if not quote and then ci >= 'a' and then ci <= z' then

ci1 : = CHARACTER'VAL(CHARACTER'POS(cl1) - 32);

edi;-get char from second file
while end...oine(fspec2) and not end-of-file(fspec2) loop

skipJine(fspec2);
end loop;
if not end...oL-file(fspec2) then

get(fspec2,c2);
if c2 ='or c2 = ASCII.HT then6

c2...white := true;
buffer2.str(buffer2.bpos) ''

buffer2.bpos := buffer2.bpos mod slen + 1;
while (not end-of-file(fspec2)) and then

(c2 ='or c2 = ascii.ht) loop
get(fspec2,c2);

end loop;
if c2 = ascii.ht then c2 =''end if;

end if;
else

end If; c:

If not quote and then c2 >= 'a'and then c2 <= 'z' then
c2 := CHARACTER'VAL(CHARACTER'POS(c2) - 32);

end If;
-update both global buffers

bufferi.str(bufferi.bpos) :- ci;
bufferi.bpos : = bufferi.bpos mod slen + 1;
buffer2.str(buffer2.bpos) :- c2;
buff er2.bpos := buffer2.bpos mod slen + 1;

-if EOF on one file, but not the other, then
- signal difference between files

if end-.oLfile(fspeci) zor end...offile(fspec21) then 4
test := TRUE;6

else
If cl-white xor c2...white then

UNCLASSIFIED

UNCLASSIFIED MAKE- UTIL Package Body 67

test: - TRUE;
else

* test: (ci /= c2);
end If;

end if;
-toggle quote flag if necessary.

if ci = "" then quote := not quote; end if;
return;

end compc;

procedure CONrSCA(mainbuf :in out buffer; tstring :in out target;
* fspec :in FILE..TYPE) Is

-This procedure is used to continue scanning a single file once
-the two files have found to differ. It scans until the string
-represented by tstring is found. This allows the change
-discovery algorithm to "resynchronize" the scan at every
- "PRAGMA CHANGE-TYPE": if a difference is found, CONTSCAN

* -is called for each file separately, advancing each file's pointer
-to the next occurrance of "PRAGMA CHANGE-TYPE".

matchcount :NATURAL :=O;

begin

outer: loop
-while input isn't in a quoted string, scan for target string
-using the GETC above (not TEXTJO.-GETC)
while not quote loop

if mainbuf.str((mainbuf.windowpos + tstring.index - 1)
* mod slen + 1) = tstring.str(tstring.index)

then
matchcount :=matchcount + 1;
tstring.index := tstring.index mod tstring.len +- 1;

else
matchcount :- 0;

* mainbuf.windowpos :- mainbuf.windowpos mod slen + 1;
end If;
if matchcount - tstring len then

return;
end If;
If (mainbuf.windowpos +tstring.index - 1) mod slen + 1=

* mainbuf.bpos then
while not end-of-file(f spec) and end-ofine(f spec) loop

skip-ine(fspec);
end loop;
If enc-of-file(f spec) then return; end if;
getc(mainbuf,fspec);

* If end-offile(fspec) then return; end If;
end if;

end loop;

UNCLASSIFIED

UNCLASSIFIED MAKEU77L Package Body 68

-now that input is inside a quoted string,
-discontinue scan until end of quoted string
while quote loop S

getc(mainbuf,fspec);
if end.offile(fspec) then quote:= FALSE; return; end if;

end loop;

-reset scanning params.
mainbuf.windowpos:f mainbuf.bpos;
tstring.index:= 1;

-loop until target is found.

end loop outer;

end CONTSCAN;

function COMPSCAN(tstr :in vstring; fspecl, fspec2 :in FILETYPE)
return boolean is 0

-This function accepts as input a vstring to search for,
-and scans the two input files simultaneously for it.
-If the files are identical (with the exception of new-lines
-and tabs), it returns true when the string is found
-(or if both files terminate simultaneously).(
-If any character differs between the two files, the procedure
-calls CONTSCAN on each file separately to advance the
-appropriate file pointers to the target string, and then
-returns false. If either file terminates while data
-remains in the other, flase is returned.

tstring :target; S
matchcount :NATURAL :=O;
test :BOOLEAN;
tempquote :BOOLEAN;

begin

-create a "target" out of input vstring
tstring.str tstr.str;
tstring.len tstr.len;
-test first characters of each file
compc(fspecl,fspec2,test);
if test then

tempquote quote;
contscan(bufferl,tstring,fspecl);
quote := tempquote;
contscan(buffer2,tstring,fspec2);
return FALSE;

end if;
-if EOF in either file, then both ended simultaneously
-(since COMPC picks up separate EOF's in TEST).(

UNCLASSIFIED

UNCLASSIFIED MAKE-UTIL Package Body 69

if end.oLfile(fspecl) then return TRUE; end if;
outer: loop

-while not in a quoted string, scan simultaneoulsy for
-target string
while not quote loop

if bufferl.str((bufferl.windowpos + tstring.index - 1)
mod slen + 1) = t string. str(tstring. index)

then
matchcount :=matchcount + 1;
tstring.index :=tstring.index mod tstring.len + 1;

else
matchcount :=0;
bufferl.windowpos bufferl.windowpos mod slen + 1;

* buffer2.windowpos :=bufferi .windowpos;
end if;
if matchcount = tstring.len then

bufferl.windowpos :=bufferl.bpos - 1;
buffer2 .windowpos :=bufferi .windowpos;
return TRUE;

* end if;
if (bufferl.windowpos +tstring.index - 1) mod slen + 1=

bufferl.bpos then
compc(fspecl1,fspec2, test);
if test then

tempquote := quote;
* contscan(bufferl ,tstring,fspecl);

quote := tempquote;
contscan(buffer2 ,tstring,fspec2);
return FAILSE;

end if;
if end-of-file(fspecl) then return TRUE; end if;

* end if;
end loop;

-once in quoted string, compare character by character
-without scanning
while quote loop

* compc(fspecl,fspec2,test);
If test then

tenlpquote :=quote;

contscan(bufferl,tstring,fspecl);
quote := tempquote;
contscan(buffer2,tstring,fspec2);

* return FAILSE;
end if;
If end-of-file(fspecl) then return TRUE; end If;

cliu Soup,

-reset scanning pointers before resuming scanning
* bufferl.windowpos :=bufferl.bpos;

buffer2.windowpos :=bufferl.windowpos;

tstring.index :=1;

UNCLASSIFIED

UNCLASSIFIED mAKF.uTI Package Body 70

end loop outer;

end COMPSCAN;

function GET.CHANGE...TYPE(fspecl,fspec2 Jn FILE-TYPE) return VSTRING is
-This function is calle once botth files are at a
-"PRAGMA CHANGE-TYPE". It extracts the change type from"
-the pragma, making sure it is the same in both files,
-returning a blanks if anything is wrong with the
-syntax or layout.

ci,c2 :CHAR~ACTER;
result :VSTRING;

begin

-skip to next quote in first file
get(fspeci,ci);
while ci /= '"'loop

get(fspeci,cl);
end loop;

-skipp to next quote in second file
get(fspec2,c2);
while c2 /= '"'loop

get(fspec2,c2);
end loop;

-get first change type chars in each file
get(fspecl,ci);
get(fspec2,c2);
-keep going 'til closing quote
while ci /= '"'loop

If ci /= c2 then
return(O, (others = >''

end if;
if ci >=W''and then ci <= 'z' then

C1i: CHARACTER'VAL(CHARACTER'POS(ci) - 32);
end if;
result.len := result.len + 1;
result. str(result. len) := ci;
get(fspeci,ci);
get(fspec2,c2);

end loop;

-if one ends before the other:
if ci /= c2 then

return(0, (others =>'')
end If;

-skip to next opening quote in filel

UNCLASSIFIED

UNCLASSIFIED MAKEUTIL Package Body 71

get(fspecl,cl);
while cli ='"' loop

get(fspecl,cl);
end loop;

-skip to next opening quote in file2
get(fspec2,c2);
while c2 /= " loop

get(fspec2,c2);

end loop;

-compare second "validation" strings in both files
get(fspecl,cl);
get(fspec2,c2);
while cli = "" loop

if cl /= c2 then
return(O,(others =>'''));

end if;
get(fspecl,cl);
get(fspec2,c2);

end loop;
if cl/f= c2 then

return(O,(others =>''));
end if;
return result;

end GETCHANGE-TYPE;

function CHANGES(filel,file2 :in file-name) return large-vstring is
-This is the function that coordinates the scanning and
-reading of change-type pragmas to extract change types.
-It returns a large-vstring which contains a concatenation
-of all change-types discovered between the two files used
-as arguments.

change-type :VSTRING;
search-string :VSTRING;
result :LARGEVSTRING;
s.string :target;
fspecl ,fspec2 :FILETYPE;

begin

open(fspecl,INFILE,trim(filel));
open(fspec2,INFILE,trim(file2));
search-string.str(i..18) := "PRAGMA CHANGE-TYPE";
search-string.len := 18;
s.string.str search-string.str;
s.string.len :i search-string.len;

-scan for first change-type pragma:
-if files differ before first pragma,

UNCLASSIFIED

9

UNCLASSIFIED MAK&-u77L Package Body 72

-then return "GENERAL"
if not COMPSCAN(search...string,fspecl ,fspec2) then

result. str(L..7) :="GENERAL,";
result.len :=7;
return result;

end if;

-if files end before first pragma, return null string
if end...ofile(fspecl) and then end...of-fite(fspec2) then

result.len :=0;
return result;

end if;

lop-get change-.type from pragma
change-..type :=get..change-type(fspecl ,fspec2);
if change-type.len = 0 then

result. str(1. .7) :="GENERAL'
result.len :=7;
return result;

end if;

-compare 'til next pragma
if not CQMPSCAN(searc-string,fspecl,fspec2) then

result :=result + change-type;
end if;

-if files both end before next pragina, then done
if end-.of.ile(fspecl) and then end-oL-file(fspec2) then

return result;
end if;
-if only one ends, then scan
-other for a change-type pragma.0
-if found, then signal "GENERAL"
if end...oL-file(fspecl) then

CONTSCAN(buffer2,s...string,fspec2);
if not end...offile(fspec2) then

result. str(1..7) "GENERAL";
result.len := 7;
return result;

else return result;
end if;

elsif end...of-file(fspec2) then
CONTSCAN(bufferl,s...string,fspec 1);
if not end-of-Jile(fspecl) then9

result.str(1..7) := "GENERAL";
result.len :- 7;
return result;

else return result;

end If; en f
end loop;

UNCLASSIFIED

UNCLASSIFIED mAKE..uTiL Package Body 73

lo se(f spec 1);
close(fspec2);

end CHANGES;

procedure GET-NEXT-WORD(line :in STRING; index :in out NATURAL;
word :in out STRING) is

* -This procedure takes in a buffer and a pointer into
-that buffer. Beginning with the character pointed to by
-the pointer, it parses a word, returning the word and the
-new pointer value. If no legal word is left, it returnis
-a blank "word" and a pointer value equal to the length of the
-input buffer + 1. The only characters considered to be delimiters
-are ' 1, Vy 6='), and ','.

word-index :NATURAL: 0;

begin

* -make sure there is parse-able material in buffer
if index > line'LAsT then

word := (word'FIRST..word'LAsT = >')
return;

end if;
-strip leading delimiters
while line(index) -'' or else

Iine(index) - TI or else
line(index) = '=' or else
line(index) - ', loop

index := index + 1;
if index > line'last then

* word: (word'FnIS'r..word'LAST =>')

return;
end if;

end loop;
-scan for final delimiter while moving LINE to WORD
- character by character

* for i in index. .line'last loop
If line(i) = ' 'or else

line(i) =T''or else
line(i) = '=' or else
line(i) -',' then

word(word~index+1..word'LAsT) :=(others =>')
* index:= i+ 1;

return;
end If;
word-index :=word-index + 1;
-change to upper case if necessary:
if line(i) >=V''and line(i) <= 'z' then

* word(wordjndex) := CHARACTER'VAL(CHARACTER'POS(
line(i)) - 32);

else word(word-in.dex) :=line(i);

UNCLASSIFIED

UNCLASSIFIED MAKE-UTJL Package Body 74

end if;
end loop;
-if parsed to the end of buffer, return
-buffer len + 1 in pointer
index :- line'last + 1;
return;

end GET.NEXT-.WQRD;

end MAKE-UTIL;

UNCLASSIFIED

UNCLASSIFIED 75

B.3. Main Programs

This table is provided to summarize the functions performed by the executable programs, as well
as describe available options:

Description of Main Programs
Name Invocation Syntax Option Description

ARCTADA arct.ada [-v] filename This program is a shell wrapped around the
Verdix Ada compiler. Since no interface to
the compiler could be worked out, this is
more like a stub.

-v Turns on verbose mode.
ARCTCREATE arct.create [-b] unit Creates a node in the source archive graph

for the unit-requires file "unit.O.a" to
exist, and sets this file to be the current file
for the unit.

-b Same as "arct.create unit; arct.create
unitb". Can be used when specification
and body of a package are to be considered
separate compilation units.

ARCT.DESCEND arct.descend unit Finds the current node in the source archive
graph for the unit. and creates a new child
node (giving it a new file name which is the
same as the current file name but with the
version field incremented). It then makes
this new child the current node for the unit.
It does not actually create a new file, it just
manipulates the source archive graph.

ARCTDIR arct.dir [-dl-vi [path] Lists all units in the specified ARCT library.
The -d and -v options are mutually
exclusive.

-d Causes the entire contents of the derived
unit graph to be listed instead.

-v Causes the entire source archive graph to be
listed instead.

ARCT.EDIT arct.edit unit Finds the current file for the unit, descends
it (like ARCTDESCEND, but ARCTEDIT actu-
ally creates the new file as well), spawns off
an instance of the editor specified by the
environment variable EDITOR on the new
file, and then moves the old file into the
source archive directory (.arct.source).

UNCLASSIFIED

UNCLASSIFED 76

______ Dscription of Main Programs (Continued)
Name Invocation Syntax Option Description

ARCT-NiAKE arct.make unit or This program is the ARCT make processor.
arct.make -s unit makefile It locates the make-file for the unit (or, is -s

is specified, sets the makefile to be the
current make-file for the unit before
proceeding), reads it, and invokes
ARCT-ADA, (or the specified construction
procedure) on any units which need updat-
ing.

MAKE.MAKE make-.make [-a][-sj unit Creates a make-file for the unit on its stan-
dard output which will cause normal Adi
recompilation behavior.

-a Causes references to units which cannot be
found in the current directory to be
included in the make-file (the default is to
omnit references to units outside the current
directory).

-s Causes references to standard library units
to be included in the make-file.

ARCT-ADA (arct-ada.a):

with text-io,intio,u.env,a-.strings;
use tex t-o, in tio, uenv, a-strings;

procedure arct-ada is

cmd.Jine a-.string;
cmdJine-ptr integer: 1;
ret-code :integer;
tempfile string(1..23) ".arc t. source/. arct. temp";
report-file FILETYPE;
line string(l..80);
last natural;

function find...v(s:a...string) return boolean is
begin

if next(" -v",s) > 0 then
return true;

end If;
exception

when NOT-FOUND => return false;
end find-.v;

begin
cmdJine :o...a("/usr/vads5fbin/ada)

for i n 1. .argc-1I loop
cmd-jine: cmdjine & argv(i) &''

end loop;

UNCLASSIFIED

UNCLASSIFIED ARCT-ADA 77

If finc-v(cmdJine) then
cmdjine crnd-ine & "~tee " & tempfile;

* else
cmd-line cmd-line & "-v > " & tempfile;

end if;
-rec ode :=unix-prcs.spawn(cmdiine);
putline(argv(O).s & "="& cmd-line.s);
putine(argv(O).s & "~"& "(cannot interface to compiler)");

* - to find out if compilation was successful,
- grep tempfile for "UNIT UNCHANGED".
- if this is found, compilation was unsuccessful.
return;

end arct-ada;

ARCT-CREATE (arct-create.a):

with TEXTJIO, GRAPH-MANAGER, FILEUTIL, MY..STRINGS,
* A-STRINGS, CSTRINGS, U-ENV, ARG...SCANNER, ARCT-GLOBALS;

use TEXT-1O, GRAPH-MIANAGER, FILE-UTIL, MY-STRINGS,
A-STRINGSCSTRINGS,U-ENV, ARG-SCANNER, ARCT-GLOBALS;

procedure arct-create is

* options :fiag...array-type reset-..flags;
arg..ptr :integer :=1
node :integer 0
module-niame :unit-name (others =
bmodule-name :unit-name :=(others =
fname :file-naxne (others =

*bname :filejiame (others =
name-len :integer :=0;

begin

If (argc > 3) or (argc < 2) then
* stderrJine("'Incorrect number of arguments. Correct usage:");

stderr.Jine("");
stderrJine(" arct .create [-b] unit...name");
stderrjine("");
return;

end if;
* get-args("b", options, arg..ptr);

geL-vgraph;
if not options(Wb) then

namejlen := argv(arg-.ptr).s'LAST;
modL! -!name (1..nanieien) := argv(arg-..ptr).s;
FIND-CURRE NT(module..name, fname, node);

* if node = 0 then
fname : = file-name-of(module-jiame);
if not file..exists(trim(fname)) then

UNCLASSIFIED

UNCLASSIFIED ARCT-CREATE 78

stderr("File '");
stderr(trim(fnanie));
stderr("' for unit ...);
stderr(trim(m-,odule..name));
stderrJine("' not found.");
stderrJine("Must have initial file to start new unit.");
return;

end if;
backup..vgraph;0
CREATE-VER(fname module-name);
put-vgraph;
put("File "');
put(trim(fname));
putjine("' successfully added to version control");
put("graph for unit "'); 0
put(trim(module-.name));
put-line("'.");
return;

else
stderr("Unit ")

stderr(trim(module..name));
stderrJine("' already exists in version control graph.");
return;

end if;
else

namnejen :=argv(arg-ptr). s'LAs'r;
module-name (1..nameilen) :=argv(arg-.ptr).s;
FIND-cuRRENT(modulename,fname,node);
If node = 0 then

bmodule-.name module-.name;
bmodule...name(nameJen+l ..namelen+2) =c-"
FIND-.CURRENT(bmodule.Jame, fname, node);
If node = 0Othen0

fnanie :=file-njame-of(module..name);
bname: file...name-.of(bmodule..name);
if file-.exists(trim(fname)) and

file...exists(trim(bnamne)) then
backup..vgraph;
CREATE...VER(fname,module...name);
CREATE...YER(bnale ,bmodule..name);
put-vgraph;
put-line(" File'" & trim(tnaine) &

"'for specification and file "' &
trim(bname) & "' for body of unit'" &
trim (module.name) & ""');

putJine(" successfully added to version control graph.");
else

stderrJine("Cannot find file(s) '" &
trim(fname) & "' and "' & trim(bnanie) &

stderrJine("Both must exist for new nodes to be" &
"4created.");

end if;

UNCLASSIFIED

UNCLASSIFIED ARcT..CRFATE 79

else
stderrjine("Unit '" & trim(bmodule-name) &

* ") alrzady exissts.");
return;

eleend If;

stderrJine(" Unit "' & module...name(.. name-] en));
put-Jine("' already exists.");

* return;
end if;

end if;
return;

exception
* when INDEX_.FILENOTFOUND =>

stderrJine("ARCT index file not found.");
stderr.Jine("Perhaps this is not an ARCT library.");

when INVALID-JI-AG =>
stderrJine("Invalid option. Correct usage:");
stderrjine("");

*stderrjine(" arct.create [-bi unit-name");
stderrJine("");

end arct-create;

ARCTICURRENT (arct-current.a):

with TEXTJO0, GRAPH-MANAGER, FILE...UTIL, MY-..STRINGS,
A-STRINGS,C-.STRINGS,U..$NV, ARG..SCANNER, ARCT-GLOBALS;

use TEXT..JO, GRAPH-MANAGER, FILE.JJTIL, MY..5rRINGS,
* A-STRINGS,C..STRTNGS,U..ENV, ARG.SCANNER, ARCT-GLOBALS;

procedure arct-.current is

options :fiag...array-type :=reset-flags;
arg..ptr :integer := 1

*node :integer :=0;
module-.name :unit-.name :=(others >

fnamne :file-jiame :=(others =
nameJen :integer := 0;

begin

il argc < 2or argc > 3then
stderrJine("Incorrect number of arguments. Correct usage:");
stderrjine("");
stderrJine(" arct.cur [-s] unit...name");
stderrjine("");

* return;
end If;
get-args("s", options, arg..ptr);

UNCLASSIFIED

UNCLASSIFIED ARCT-CURRENT 80

get-vgraph;
nainejen :=argv(arg-ptr).s'LAsT;
module-name (1..name-len) :=argv(arg-.ptr).s;
?-IND-CUPRENT(module..na-ne ,fnamne. node);
if options('s') then

if node = 0 then
put("Warning: unit")
put (trim(module-naine));
put.Jine("' has no current unit.");
putiine("Attempting to complete operation anyway.");

else
put("Current file for unit ")

put(trim(module-name));
put-line(""');
put("is "');
put (trim (fname));
put-line("'.");

end if;
name-len :=argv(arg..ptr + 1).s'LAsT;
fname(1..name-len) :=argv(arg..ptr +1)s
fname(nameJen+1..file..nameJen) :=(others =>')
if file-exists(trim(fname)) then

backup-vgraph;
if set-current(module-.name,fname) then

put-vgraph;
put("File "') ;
put(trim(f name));
putJine("' is now the current");
put("tile for unit "');
put(trim(module..name));
put-line("'.");

else
stderr("Unit")
stderr(trim(module..name));
stderr..Jine("' has no file");
stderr("'");
stderr(trim(fname));

edi;stderrline("' associated with it.");

else
stderr("File')
stderr (trim(fname));
stdefrJine("' does not exist in");
stderr("the current library. It cannot be set");
stderrJine(" as a current file.");

end If;
else

if node = 0then
put("No current node for unit ")

put(trim(module-iiame));
put-Jine("'");
putjine("in the version control graph.");

else

UNCLASSIFIED

UNCLASSIFIED ARCT-CURRENT 81

put("Current file for unit "');
put(trim(module..name));

* put-line("');
put("is"'1;
put(trim(fnanie));
put-line("'.");

end if;
end if;

* return;

exception
when INDEX-FILE NOTFOUND =>

stderrJine("ARCT index file not found.");
stderr-Jine("Perhaps this is not an ARCT library.");

* when INVALID-.FLAG =>
stderriine("Invalid option. Correct usage:");
stderrjine("");
stderrjine(" arct.cur [-s] unit-name");
stderr-jine("");

* end arct-current;

ARCT..DESCEND (arct-descend.s):

* With TEXTJO0, GRAPH-MANAGER, FILE-UrIL, MY-srRINGS,
A-STRINGS, ILENV, ARCTGLOBALS;

use TEXT-JO, GRAP-MANAGER, FILE-.UTIL, MY_5rRINGS,

A-STRINGS, U-ENV, ARCT.GLOBAILS;

procedure arct-descend is

function-flag :bc, Iean :=False;
arg-ptr :integer :=1;
node :integer :=0;
module-.name :unit-name :=(others =
fname :file-.jame :=(others =

*name-len :integer :- 0;

begin

if (argc /= 2) then
stderrJine('Incorrect number of arguments. Correct usage:");

* stdefrline("');
stderrJine(" arct.desc unit..name");
stderr-line("");
return;

end if;
get-vgraph;

* naniejen :- argv(arg...ptr).s'LAST;
module-.name (1..namejen) :- argv(arg...ptr).s;
FIND-.CURREN(module...name,fname,node);

UNCLASSIFIED

UNCLASSIFIED ARCT-DEscEND 82

If node = 0 then
stderr(" Unit'");
stderr(trin(moauie..name));
stderrline("' does not have");
stderrline("a current file in this library.");

else
if file..-exists(trim(fname)) then

backup..vgraph;
DESCEND(module.Jlame);
put("Unit'");
put(trim(module..name));
put("' was descended from file");

put(trim(fname));
put-line(");
put("to file "');
FINILCuRRENT(modulename, fname, node);
put(trim(fnaine));
put-line("'.");

eleput-vgraph;

stderr(trim(fname));

stderr-line("'");
stderr("for unit "');
stderr(trim(module-name));
stderr-line("'.");

end if;
end If;
return;

exception
when INDEXFILENOTFOUND =>

stderrJine("ARCT index file not found.");
stderrJine("Perhaps this is not an ARCT library,");

end arct-.descend;

ARCT-.DIR (arct-.dir.a):

with GRAPH-MANAGER, ARCT-3LOBALS, ARG-SCANNER,
TEXT-JO, U-ENV, A-STRINGS;

use GRAPH-MANAGER, ARCT.GLOBALS, ARG-SCANNER,
TEXT-1O, U...ENV, A-STRINGS;

procedure arct-dir is

arg...ptr integer: 1;
options flag-.array..type := reset-lags;

begin

UNCLASSIFIED

UNCLASSIFIED ARCTDIR 83

get-args("dv",options,arg-ptr);
if arg-ptr 1= argc then

path := argv(arg-ptr);
if path.s(path.len) /= '/' then

path := path & '';
end if;

end if;
if options('d') then

get-dgraph;
if not DISPLAY-DER then

putiine("Derived unit graph is empty.");
end If;

elsif options('v') then
get-vgraph;
If not DISPLAYVER then

put-line("Source control graph is empty.");
end If;

else
get-vgraph;
DIRECTORY;

end if;
return;

exception
when INDEX.FILENOT_FOUND =>

stderrJine("ARCT index file not found.");
stderrJine("Perhaps this is not an ARCT library.");
return;

when INVALID-FLAG =>
stderrJine("Invalid option. Correct usage:");
s tderrjline("");
stderrJine(" arct.dir [-di-v] [path]");
stderrjline("");
return;

end arct-dir;

ARCTEDIT (arct.edit.a):

with TEXTJO, GRAPH-MANAGER, FILE-UTIL, MY-STRINGS,
A-STRINGS, C.STRINGS, UENV, ARCTGLOBALS, UNIX.PRCS;

use TEXTJO, GRAPH-MANAGER, FILEUTIL, MY_STRINGS,
A_STRINGS, CSTRINGS, UENV, ARCTGLOBALS;

procedure arct-edit Is

function-flag :boolean :- False;
arg.ptr :integer :- 1;
node :integer :- 0;
module-name :unit-name :- (others =>' ');
fname :file.name := (others =>' ');

UNCLASSIFIED

UNCLASSIFIED ARCTIEDIT 84

oldjfname :file-name := (others =
naniejen :integer :=0;
ret-code :integer 0;

begin

If (argc /= 2) then
stderrline("Incorrect number of arguments. Correct usage:");
stderr.Jine("");0
stderr.Jine(" arct.edit unit-name");
stderrjine("");
return;

end if;
get-vgraph;
name-len := argv(arg..ptr).s'LAST;
module-niame (1..namejen) := argv(arg-ptr). s;
FIND...CURRENT(module..name,oldjname,node);
if node =0 then

stderr("Unit ")

stderr(trim(module-name));
stderrjine("' does not have");
stderr.Jine("a current file in this library.")

else
if file-exists(trim(oldjfname)) then

backup..vgraph;
DESCEND(module-name);
FIND-CURRENT(module.Jlame,fname,node);0
putJine("Descending " & trim(module..jame) &

"'from "& trim(old-fname) &
" to"1 & trim(fname) &"..)

if unix-.prcs.spawn(to..a("cp "& trim(okldfname) &
" "& fname)) = 0 thzn
If unix...prcs.spawn(to...a(getenv(to...c("EDITOR"))) & "&0

trim(fnamc)) = 0 then
put-vgraph;
if uniX...prCS.spawn(to..a("mv -f " &

trim(oldjfname) & " ") & source-archive) /0 then
stderrJine("Error moving " & trim(oldjfname) &

" to " & "source archive.");
end if;

else
ret-code := unix...prcs.spawn(to..a("rm -f " & trim(fname)));
stderrJine("Error editing " & trim(fname) &

end If; Descend operaticn failed.");

else
stderrJine("Could not copy fi e " & trim(oldjfnanie) &

" to file "& trim(fname) &".)
end if;

else
stderr("Cannot find current source file'");
stderr(trim(fname));
stderr-fine(""');

UNCLASSIFIED

UNCLASSIFIED ARC1LEDJT 85

stderr("for unit "');
stderr(trim(module.name));
stderrjine("'.");

end if;
end if;
return;

exception
when INDEXFILENOTFOUND =>

stderrJine("ARCT index file not found.");
stderrJine("Perhaps this is not an ARCT library.");

end arct-edit;

ARCTMAKE (arct.make.a):

with TEXTIO, GRAPH-MANAGER, FILEUTIL, MY-STRINGS, MAKE_PROCS,

A-STRINGS, UENV, ARCTGLOBALS, ARGSCANNER;
use TEXTJO, GRAPH-MANAGER, FILEUTIL, MY..STRINGS, MAKEPROCS,

A.-STRINGS, UENV, ARCTGLOBALS, ARGSCANNER;

procedure arct-make is

set-flag :boolean false;
argptr :integer := 1;
node :integer 0;
module-name :unit-name (others => '

fname :file-name (others => '

mname :file-name (others => '

namejlen :integer := 0;
INCORRECT-USAGE :exception;

begin

if ((argc /=2) and (argc /= 4)) or else
((argc = 2) and (argv(arg-ptr).s(1) = ')) then
raise INCORRECT-USAGE;

end if;
if (argc = 4) then
If (argv(arg..ptr).s(1) = '-') and (argv(arg-ptr).s(2) = 's') then

setJflag :- True;
arg.ptr :- arg-ptr + 1;
else

raise INCORRECT-USAGE;

end if;
end if;
get-vgraph;
get-dgraph;
namejen :- argv(arg-ptr).s'LAST;
module-name (1..name-len):= argv(argptr).s;
FINDCURRENT(module-name,fname,node);
if node = 0 then

UNCLASSIFIED

UNCLASSIFIED ARCT-MAKE 86

stderr("Unit ")

stderr(trim(module-name));
stderrJine("' does not have");
stderrJine("a current file in this library.");
return;

elsif set-flag then
backup- vgraph;
namejen :=argv(arg-.pti + 1.) - 'iiAS'r
mname (1. narne-len) :=argv(arg-ptr +1)s
BIND(nxnaine ,fname);
put-vgraph;

else
mname :=get-make-file-name(module-name);

end if;
If file..exists(trim(miname)) then

if BUILDMAAKE-.STRUCT(mnanle) then
backup..dgraph;
MAKE;
put-dgraph;

else
stderr.Jine("Fatal error reading makefile "'&

trim(mname) &'")

end if;
else

stderr("Make file ")

stderr (trirn(mname));
stderrJine("' not found.");0

end if;
return;

exception
when MAKEYAILED =>

stderrJine("'***** Error code 1");0
when INDEX_.FILE_.NOTFOUND =>

stderrJine("ARCT index file not found.");
stderrJine("Perhaps this is not an ARCT library.");

when INCORRECT-.USAGE =>
stderrline(" Incorrect usage. Correct usage:");
stderrJine("");0
stderr.Jine(" arct.make unit-..name or");
stderrJine(" arct.make -s unit-name makejfile");
stderrjline("");

end arct-make;

MAKE-..MAKE (make..make.a):

with TEXT-1O, MY-..STRINGS, A-STRINGS, U...ENV, STANDARDJJIST,
FILE-..SUPPORT, A1RG-.SCANNER;

use TEXT-1O, MY-.STRI- JGS, A-..STRINGS, LLENV, ARG-SCANNER;0

procedure make-make Is

UNCLASSIFIED

II

UNCLASSIFIED MAKEMAKE 87

type dependency.rec;
type a..dependencyrec is access dependencyrec;
type dependency-rec is record

unit vstring;
dependencies largevstring;
source boolean;
next_rec a-dependencyrec;

end record;
dependency-list :adependency-rec;
get-another a-dependency-rec;
global.deps large.vstring;
arg..ptr integer:= 1;
c-ptr :integer;
options flag-array-type := reset-flags;
NOFILEARG exception;

procedure stderr(s: in string) renames file-support.write-tostderr;

procedure GET_WORD(fspec: in FILE-TYPE; wd: out vstring;
wd-delim: out CHARACTER) is

word :vstring;
c :CHARACTER;

delim :constant array (0..127) of boolean

(True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True.

True, True, True, True, True, True, True, True,
True, True, True, True, True, False, True, True,
False, False, False, False, False, False, False, False,
False, False, True, True, True, True, True, True,

True, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, True, True, True, True, False,

True, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, True, True, True, True, True);

begin

word.len := 0;
get(fspec,c);

while delim(CHARACTER'POS(c)) loop
get(fspec,c);

end loop;
while not delim(CHARACTER'POS(c)) loop

UNCLASSIFIED

UNCLASSIFIED MAKE.MAXE 88

if C >=W''and c <= ''then
c : CHARACTER'VAL(CHARACTER'POS(c) + 32);

end if;
word.len :=word.len + 1;
word. str(word.len) :=c;
get(fspec,c);

end loop;
wd-delim :=c;
if word.len > 1 and word.str(1. .2) =""then0

skip.Jine(fspec);
get-word(fspec,word,wd-delim);

end if;
wd: word;
return;

exception -if EOF encountered, just return blanks

when end-error =>
wd..delim :='";
wd :=word;
return;

end GET-WORD;

procedure GET-DEPENDENCIES(Unit: in a..dependency..rec) is

fspec FILE-..TYPE;0

depends large...vstring;
word vstring;
temp ... ecord a-.dependency..rec;
irecord a-dependency..rec;
word-delim :CHARACTER;

begin

open(fspec ,IN..YLE,unit.unit.str(. .unit.unit.len) & ".a");
unit.source := true;
while not end-oLfile(fspec) loop

get-word(f spec ,word,word-delim);0
if (word.Ien = 4) and (word.str(1..word.len) = "with") then

while not end-of-fleffspec) and word-delim 1=''loop
geLword(fspec ,word ,word-delim);
-put(... & unit. unit.str(I ..unit. unit len) &'
-put("... & word. str(1..word.Ien) & "

if options('s') or else 0
not standardJist.exc!ude(word) then
irecord :=dependency Jist;
-put("Searching for node in tree...");(
if irecord.unit /- word then

while irecord.next-rec /- NULL and then
irecord .next-.rec .unit /= word loop

-put("loop...");(
irecord :- irecord.next..rec;

UNCLASSIFIED

UNCLASSIFIED mAKELmAKE 89

end loop;
If irecord.next-rec /= NULL and then

irecord.next..rec. unit = word then
-putJine("Node found.");(
temp-record := irecord.next..rec;
irecord.next..rec := irecord .next-rec .next-rec:

temp-record.next-rec := dependencyjlist;
dependency-list :=temp-record;

else
-putiine("Node not found-creating new node.");(

temp-.record := new dependency-rec;
temp-record.next-rec :=dependency-list;
dependencyjist := temp...record;
temp-record. unit :=word;
get-dependencies(dependencyJist);

end if;
end if;

end if;
if options('s') or else

not standardjist.exclude(word) then
word. str(word.Ien+1. .word.len+2) 4a
word.len: word.len + 2;
unit.dependencies := unit.dependencies + word;
word. str(word.len) :'o';

else
word. str(word.len+ L.word. len+2) "=.0~~

word.len word.Ien + 2;
end If;
globaLdeps: (globaLdeps - word) + word;

end loop;
end if;

end loop;
-newline;;
-put(unit.unit. str(1.unit. unit.len) & ".o: " &(
- unit.unit.str(1..unit.unit.Ien) & ".a");
-put(unit. dependencies. str(1. .unit.dependencies .len));(
-putJine(";");(
close(fspec);
return;

exception

when namne.error =>
unit.source := false;
return;

end GET-DEPENDENCIES;

function translate(s:ln Iarge...vstring) return string is

c...ptr .integer := 1;

result :large vstring := s;

UNCLASSIFIED

UNCLASSIFIED MAKE-ZMAKE 90

begin
while c-ptr < result.len loop

If result. str(c.ptr) = ' ' and then
result. str(c..ptr+1) = ' 'then

result. str(c.pt r.. result. len -1)
result. str(c..ptr+1. result. len);

result .len :=result.len -1;
else

c..ptr := c-.ptr + 1;0
end if;

end loop;
return result. str(1..result. len);

end translate;

procedure print(s: in large..vstring; gap: in integer) is
spaces :string(1. .40) := (others =>'
beg..ptr :integer := 1;

begin
if s.len > 0 then

for end...ptr in 1..s.len loop
if s.str(end..ptr) = ' ' then

putJine(s.str(beg-ptr. .end-.ptr));
put(spaces(1..gap));
beg...ptr := end-ptr + 1;

end if;
end loop;
put(s.str(beg..ptr. .s.len));

end if;
return;

end print;

procedure stderrjine (mn: in string) Is
begin

stderr(m & character'val(1O));
end;

begin

get-args("as" ,options ,arg..ptr);
If arg...ptr < argc - 1 then

stderrJine("Too many arguments. Only first filename encountered");
stderrJine("lwill be processed.");

end If;
If arg...ptr - argc then

raise NOJILE..ARG;
end if;
dependency-list := new dependency-r.ec;
dependencylist.unit.len :- argv(arg...ptr).len;
dependencylist .unit.str(..dependencyJist .unit .len) :=argv(arg..ptr).s;
-putine("Root of dependency tree formned.");(
get-dependencies(dependencyJist);
get-another :=dependencyjist;

UNCLASSIFIED

UNCLASSIFIED AKE.MAKE 91

while get-another-next-rec /= NULL loop
If options('a') or else get-another. source then

put(get-another. unit. str(..get..another. unit. len) & ".o: " &
get-another.unit .str(. .get-another.unit .len) & ".a");

print(get-another.dependencies,get-another.unit.len + 4);
putjine(";");
newjine;

end if;
get-another :=get-another.next-rec;

end loop;
if get-another. source then

put(get-another. unit. str(l. .get-another. unit r len) & ".0: " &
get-another.unit .str(1. .get..another.unit .len) & ".a");

print (get-another.dependenc jes ,get...another. unit .len + 4);
put-line(";");
new..Jine;
put(get-another. unit .str(l. .get-another. unit .Ilen) -& ".e:"&

get-another.unit .str(1. .get-another. unit. len) & ".o");
put(translate(globaLdeps));
putjine(";");

else
put("Source file")
put(get..another. unit. str(1.. .getanother.unit. .en));
putJine(".a' not found in current directory.");

end if;
return;

exception
when INVALIID..FLAG =>

stderrJine("Invalid option. Correct usage:");
stdeffJine("");
stderrJine(" make-.make [-a][-s] unit");
stdeffrline("");
return;

when NO_.YIEARG =>
stdefrjine("No file argument specified. Correct usage:");
stderrjine("");
stderrjine(" make-..make [-a][-sI unit");
stderrJine("");
return;

end make-m.nake;

UNCLASSIFIED

UNCLASSIFIED 92

B.4. Library Units

ARCT-GLOBALS Package Specification (arcLglobals.a):

with a-..strings, file-support, file-names;
use a-..strings;
package arct-globals is

path a-string empty;
source.archive a-.string to-a(". arct. source");

procedure get-dgraph;
procedure backup...dgraph;
procedure put-dgraph;
procedure get-vgrapb *
procedure backup..vgraph;
procedure put-vgraph;
function file-exists(fnatne :in a-.string) return boolean

renames file...names. exists;
function file...exists(fnanie :In string) return boolean;
procedure stderr(s: in string) renames file-supportwriteto-stderr;
procedure stdefrline (in: In string := "");

INDEX-FILE-NOTFOUND :exception;

end arct...globals;

ARCT-GLOBALS Package Body (arctglobals.b.a):

with TEXT..JO, GRAPH-MANAGER, UNCHECKED...DEALLOCATION;
use TEXL-JO, GRAPHLMANAGER;

package body arctcglobals is

ver-rap-fnme :onsantstrig~l.23 ".act~oure/vgaphdat;'4

ver-.graph-nameu :constant string(l..23) ".arct.source/vgraph.dak";

der-..grapbifname :constant string(1..23) . .arct.source/dgraph.dat";
der...graph-backup :constant string(l. .23) :=".arct.source/dgraph.bak";

procedure free is new unchecked-dealiocation(string..rec ,a...string);

procedure get-dgraph is
adaindex :FILE...TYPE;

begin
if file...nanes .exists(path & to...a(der-.graphifname)) then

open(adaindex ,IN.YILE,path.s & der..graphjfname);
READ-.DER-GRAPH(adaindex);
close(adaindex);

UNCLASSIFIED

UNCLASSIFIED ARCT-GLOBALS Package Body 93

raise INDEXJILE...NOTFOUND;
end If;
return;

end get..dgraph;

procedure backup-dgraph is
adaindex :FILE...TYPE;

begin
create(adaindex,OUT-FILE,path.s & der..graph...backup);
sTrORE...DER..GRAPH(adaindex);
close(adaindex);

end backup-dgraph;

procedure put-dgraph is
adaindex :FILE..TYPE;

begin
open(adaindex,OUL.FILE,path .s & der-.graphifname);
STORE-DER-GRAFH(adaindex);
close(adaindex);

end put-dgraph;

procedure get-vgraph is
adaindex :FLE-TYPE;

begin
if file-jiames.exists(path & to...a(ver...graphjfname)) then

open(adaindex,INJFILE,path.s & ver-.graphifname);
READ-VER-GRAPH(adaindex);
close(adaindex);

else
raise INDEX..ILE-OT-YOUND;

end if;
return;

end get-vgraph;

procedure backup-..vgraph is
adaindex :FILE-TYPE;

begin
create(adaindex,OUT.FILE,path.s & ver...graph-.backup);
STORE-VEILGRAPH(adaindex);
close(adaindex);

end backup..vgraph;

procedure putcvgraph is
adaindex :FILE-.TYPE;

begin
open(adaindex,OUT-FILE,path.s & vcr.-.graplijname);
STORE-V.E-GRAPH(adaindex);
close(adaindex);

end put-vgraph;

function file...exists(fname :in string) return boolean Is
temp a...string: to...a(fnanie);
result boolean :=false;

UNCLASSIFIED

UNCLASSIFIED ARCTGLOBALS Package Body 94

begin
result := file.names.exists(temp);
free(temp); 0
return result;

end;

procedure stderrline(m :in string "") is
begin stderr(m & ascii.If);

0
end;

end arct_.globals;

ARGSCANNER Package Specification (arg-scanner.a):

package arg._scanner Is

type flag.array-type is array ('0'..'z') of boolean;

reset-flags : constant flag-array-type :=
(False, False, False, False, False, False, False, False,

False. False, False, False, False, False, False, False,

False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,

False, False, False, False, False, False, False, False,
False. False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False, 0
False, False, False

procedure get-args(possible-flags: In string;

flags: in out flag.array.type; arg._ptr: in out integer);

INVALIDFLAG : exception;

end arg_.scanner;

ARGSCANNER Package Body (arg-scanner.b.a):

with U.YENV;
use UENV;

package body arg.scanner is

procedure get-args(possible-flags: in string;

UNCLASSIFIED

UNCLASSIFIED ARGSCANNER Package Body 95

flags: in out flag-array-type; arg.ptr: in out integer) is

valid-flags : flag-arraytype := reset-flags;
C : CHARACTER;

begin

if arg_.ptr >= argc then
return;

end If;
for i in possible-flags'first..possible-flags'last loop

valid-flags(possible-flags(i)) := liue;
end loop;
while argv(arg-ptr).s(1) = '-' loop

for c.ptr in 2..argv(arg.ptr).Ien loop
c := argv(arg..ptr).s(cptr);
if valid.flags(c) then

flags(c) := True;
else

raise INVALID-FLAG;

end if;
end loop;
arg_.ptr := arg.ptr + 1;
exit when arg-ptr = argc;

end loop;

end get-args;

end arg.scanner;

FILEUTIL Package Specification (file.util.a):

with TEXT.O,MYSTRINGS;

use TEXTJO,MYSTRINGS;

package FILEUTIL is

-types used for scanning buffers
type buffer is record

str :STRING(1..slen);
bpos :PosrrvE:= 1;
windowpos :NATURAL := 0;

end record;

type target is record
str :STRING(1..slen);
len :NATURAL -0;
index :Po rIVE :=1;

end record;

UNCLASSIFIED

UNCLASSIFIED FiL&-UTIL Specification 96

-procedures and functions in this package
procedure scAN(tstr :in vstriflg; tspec :in FILE...TYPE);
procedure SCAN(tstr :in vstring; ispec :in FILE-..TYPE;

ospec :in FLLE...TYPE);

function GET-WORD(fspec :in FILE-TYPE) return vstring;
function GET-WORD(fspec :in FILE-.TYPE; ospec :in FILE-TYPE)

return vstring;

procedure DUMF.REiAINDER(ispec :in FILE-TYPE;
ospec :in FILErYPE);

function FILE...NAME....O(module :in unit-.name) return file-name;

function DESCEND...FNAME(fame-in :in file-name) return file-n.jame;

end FILE-UTIL;

FJLE-UTIL Package Body (file-.utii.b.a):

w~ith TEXTJIO,MY-STRINGS,INT-JO;
use TEXTJO0,MY-STRINGS,INTJIO;

package body FILE-UTIL Is

procedure GETC(buff In out buffer; fspec :in FILE-.TYPE) is
-This proc gets one character from the specified file

-and places it in the given buffer

begin

get(fspec,buff.str(buff.bpos));

- Tese lines echo file to terminal as characters are retrieved

- put(buff.str(buff.bpos));
-while end-of-ine(f spec) loop

- skipJine(f spec);
- newJine;

- end loop;

buff .bpos :=buff .bpos mod slen + 1;
return;

end GETC;

procedure SCAN(tstr :in vstring; fspec :In FILE-..TYPE) Is
-This procedure scans the specified file for the

UNCLASSIFIED

UNCLASSIFIED FILE....TIL Package Body 97

-first occurrence of the given vstring

mainbuf :buffer;
(string :target;
matchcount :NATURAL :=O;

begin

- begin initialization
tstring.str tstr.str;
tstring.len tstr.len;
getc(mainbuf,fspec);

outer: loop

if mainbuf.str((mainbuf.windowpos + tstring.index - 1)
mod slen + 1) = tst ring. str(t string. index)

then
matchcount :=matchcount + 1;
tstring.index :=tstring.index mod tstring.len + 1;

else
matchcount :=0;

mainbuf.windowpos := mainbuf.windowpos mod slen + 1;
end if;
if matchcount = tstring.len then

return;
end if;
if (mainbuf.windowpos +tstring.ind.,x - 1) mod slen + 1

mainbuf.bpos then
getc(mainbuf,fspec);

end if;

end loop outer;

end SCAN;

procedure GETC-.ECHO(buff :in out buffer; fspec :in FILE-TYPE;
ospec :in FILE...TYPE) is

-This procedure is exactly like GETC, but it
-also echoes the input from FSPEC to the file OSPEC.
-It inserts end-of-lines where necessary so that
-OSPEC is an exact duplicate of FSPEC.

begin

get(f spec ,buff str(buff.bpos));
put(ospec,buff.str(buff.bpos));
loop

if not end...oUine(fspec) then eit; end if;
skipJine(fspec);
newiine(ospec);

UNCLASSIFIED

UNCLASSIFICED FILE..UTIL Package Body 98

end loop;
buff .bpos := buff bpos mod slen + 1;
return;

end GETC...ECHO;

procedure SCAN(tstr :in vstring; fspec :in FILE...TYPE;
ospec :in FILE-..TYPE) Is

-This procedure is exactly like SCAN, except that it
-also echoes the input file to OSPEC.

mainbuf :buffer;
tstring :target;
matchcount :NATURAL :=O;

begin

- begin initialization
tstring.str tstr.str;
tstring.len tstr.len;
getc...echo(mainbuf,fspec,ospec);

outer: loop

if mainbuf.str((mainbuf.windowpos + tstring.mndex - 1)
mod slen + 1) = tstring.str(tstring.index)

then
matchcount :=matchcount + 1;
tstring.index := tstring.index mod tstring.len + 1;

else
matchcount :=0;

mainbuf windowpos := mainbuf.windowpos mod slen + 1;
end if;
If matchcount = tstring.len then

return;
end If;
If (niainbuf.windowpos +tstring.index - 1) mod slen + 1 -

mainbuf.bpos then
getc..echo(mainbuf,fspec,ospec);

end If;

end loop outer;

end SCAN;

function GET-WORD(fspec :in FILE-.TYPE) return vstring Is
-Thbis function returns a vstring containing the next
-word in the input file. It is meant to be general

UNCLASSEFIED

UNCLASSIFIED FILE.UTJL Package Body 99

-purpose, but not bullet-proof.,

buffer :vstring;
c :CHARACTER;
delim :constant array (0..127) of boolean

(True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True,

True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True,
False, False, False, False, False, False, False, False,
False, False, True, True, True, True, True, True,
True, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, True, True, True, True, True,
True, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, True, True, True, True, True);

begin

get(fspec,c);
while delim(CHARACTER'POS(c)) loop

get(fspec,c);
end loop;
for i In 1..slen loop

buffer.str(i) : c;
get(fspec, c);
if delim(CHARACTER'POS(c)) then

buffer.len := i;
exit;

end if;
end loop;
return buffer;

end GETWORD;

function GETWORD(fspec :in FILE-TYPE; ospec :in FILE-TYPE)
return vstring is

-This function is identical to GET-WORD above, but also
-echoes its input to the file OSPEC.

buffer :vstnng;
c :CHARACTER;
delim :constant array (0..127) of boolean :=

UNCLASSIFIED

UNCLASSIFIED FILEUTIL Package Body 100

(True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True,
True, Tr'e, True, True, True, True, True, True,
True, True, True, True, True, True, True, True,

True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, irue,
False, False, False, False, False, False, False, False,
False, False, True, True, True, True, True, True,
True, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, True, True, True, frue, True,
True, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False,
False, False, False, True, True, True, True, True);

begin

get(fspec,c);
put(ospec,c);
while delim(CHARACTER'POS(c)) loop

while end-of-line(fspec) loop
newline(ospec);
skipjliue(fspec);

end loop;
get(fspec,c);
put(ospec,c);

end loop;
for i In 1..slen loop

buffer.str(i) :- c;
get(fspec,c);
put(ospec,c);
if delim(CHARACTER'POS(c)) then

buffer.len := i;
exit;

end If;
end loop;
return buffer;

end GET-WORD;

procedure DUMPREMAINDER(ispec :in FILE-TYPE; L spec :in FILE-TYPE) is
-This procedure copies a file, new-lines and all, from
-ISPEC to OSPEC.

c :CHARACTER;

begin

UNCLASSIFIED

UNCLASSIFIED FILE.UTIL Package Body 101

eofoop: while not end-oLfile(ispec) loop
while endo...Uine(ispec) loop

if end.of-file(ispec) :hen exit eofoop;
end if;
newline(ospec);
skipline(ispec);

end loop;
get(ispec,c);
put(ospec,c);

end loop eofjoop;

end DUMPREMAINDER;

function FILE..NAMEOF(module :in unitiname) return file-name is
-This function accepts as its argument a unit name
-and returns a file name consisting of that unit name
-fol wed by ".O.a"

resultfile :file-name (others =>'');
mocilen :INTEGER unit-nameJen + 1;

begin

for i in 1..unit-name.Jen loop
if module(i) = " then

modjen:= i;
exit;

end if;
end loop;
resultfile(1..modJen - 1):= module(1..modjen - 1);
resultfile(modJen..modjen + 3) := ". 0 .a ' ;

return resultfile;

end FILENAMEOi';

function DESCENDFNAME(fname-in :in file-name) return file-name is
-This function accepts a VMS file name in and returns
-The same file name with the next higher version number

decLstart :POSrrIVE file-namejen;
decLend :POSTrT := file-nameJen;
ver-ptr :POSITIVE;
new-ver :INTEGER:= 0;
result :file.name:= fname-in;
temp :NATURAL;

begin

for i in reverse 1..file-nameJen loop

UNCLASSIFIED

UNCLASSIFIED FILEUTIL Package Body 102

if fname-in(i) = '.' then

deci-end := i - 1;
exit;

end if;
end loop;
for i in reverse 1..deci-end loop

if fname-in(i) = '.' then
deci-start := i;

exit;
end if;

end loop;
ver-ptr := decistart + 1;

-calculate the old version numbt.r:
while fname_in(verptr)>='O' and fnamein(verptr)<='9' loop

new-ver := new_ver * 10 +
CHARACTE'Pos(fname-in(ver-ptr)) - 48;

ver.ptr := ver-ptr + 1;
end loop;
newver new-ver + 1; -calculate new version number
ver-ptr deci-start + 1; -set semi to char where version

- number should be placed P
if new-ver > 99 then

put(result(verptr..ver-ptr+2),new-ver);
ver-ptr := ver.ptr + 3;

elsif newver > 9 then
put(result(ver-ptr..ver-ptr+l),new-ver);
ver-ptr := verptr + 2;

else put(result(verptr..ver.ptr),new-ver);
ver.ptr := ver-ptr + 1;

end if;
result(verptr..ver.ptr + 1) := ".a";
ver-ptr := ver.ptr + 2;

-blank out rest of file name 0
result(ver-ptr..file-nameJen) := (others =>'');
return result;

end DESCENDJFNAME;

end FILEUTIL;

MYSTRiNGS Package Specification (my.strings.a):

package MY-STRINGS is

slen :constant INTEGER:= 32;
Islen constant 256; 0
xlslen :constant 1024;

UNCLASSIFIED

UNCLASSIFIED MY-JSTRINGS Specification 103

type vstring Is record
len :NATURAL: =0;
str :STING(1. .slen) :=(others =>

end record;
type Iarge...vstring Is record

len :NATURAL: =0;
str :STRING(l..lslen) :=(others =>'

end record;
type xlarge..v siring Is record

len :NATURAL:=O0;
str :STRING(..xlslen) := (others => ')

end record;

-name types and constants used in ACVS and graph manager packages
file-.namejlen :constant 39;
unit-namejlen :constant =32;
subtype file-..name is STRING(..filenamelen);
subtype unit-niame is STRING (..uni-nameJen);
subtype makejlle..name is STRING (L. .file-name.jen);

function "+"(whole :in large..vstring; part :in vstring)
return large-vstring;

function "+"(whole :in large...vstring; part :in large...vstring)
return large...vstring;

function "-"(whole :in large...vstring; part :in vstring)
return large....vstring;

function TRIM (str :in STRING) return STRING;

end MY-..STRINGS;

IY-sTRINGs Package Body (my...strings.b.a):

package body MY-STRINGS is

function "+"(whole :in large...vstring; part in vstring)
return large..vstring Is

-This function is used to concatenate large-vstrings
-with vstrings. It inserts a blank space between the
-end of the large..vst ring and the beginning of the vstring
-when concatenating.

:NATURAL;

begin

If part.len = 0 then return whole; end If;
i:=whole. len + part. len + 1;

return (i,

UNCLASSIFIED

UNCLASSIFIED MY-STRINGS Package Body 104

whole. str(1..whole -len) &" &
part. str(1. .part.len) &
whole.str(i + 1. .Islen));

end 44+7);

function "+"(whole :in large..ystring; part :in large...vstring)
return large...vstring is

-This function is used to concatenate Iarge..vstrings
-in the normal manner (no space is inserted).

i :NATURAL;

begin

if part.len = 0 then return whole; end If;
i =whole.len + part.Ien;

if i < lslen then
return (i,
whole. str(1. .whole. len) &
part. str(1. .part.len) &
whole.str(i + 1. .lslen));

else
return (lslen,
whole. str(1. .whole.len) &
part. str(1. .lslen-whole.len));

end If;

end ""

function "-"(whole in large...vstring; part :In vstring)
return large..vstring Is

-This function is used for removing a substring
-(specified in the vstring) from a larger string(
-(specified by the large..vstring).(

matchcount :NATURAL :-0;
windowpos :NATURAL :-0;
subindex :PoSrrwVE :-1;
answer :large-vsstring;

begin

If part.Ien - 0 then return whole; end If;
while windowpos + part.len <- whole.len loop

If whole. str(windowpos + subindex) - part. str(subindex)
then matchcount :- matchcount + 1;

If matchcount - part.len then
answer.len :- whole.len - part .Ien;

UNCLASSIFIED

UNCLASSIFIED MfY-.STRINGS Package Body 105

answer. str(1. .windowpos) :=whole. str(..windowpos);
answer.str(windowpos+l..lslen - part.len)

whole.str(windowpos+part.len+l. .lslen);
return answer;

end if;
subindex :=subindex mod part.len + 1;

else
matchcount :=0;
windowpos: windowpos + 1;

end if;
end loop;
return whole;

end 441

function TRIM (str :in STRING) return STRING is
-This function returns a string consisting of
-just the first sequence of non-blank characters
-in the input string. It is used primarily fro "trimming"
-text strings for output so that there true length does not

-affect the spacing of the output.

begin

for i In str'first. .str'last loop
if str(i) = ' ' then

return str(str'first..i-1);
end if;

end loop;
return str;

end TRIM;

end MY-STRINGS;

STANDARDLirT Package Specification (standardUst.a):

with my-.strings, a-..strings;
use my-.strings, a-..strings;

package STANDARD-LIST Is

function exclude(unit :in 1rstring) return boolean;
function exclude(unit :in a-..string) return boolean;
-procedure test-array;

UNCLASSIFIED

UNCLASSIFIED STANDARDJIST Specificatlion 106

end STANDARD...LIST;

-with text-o, int-io;
-use text..jo, int-io;

package body STANDARD-LIST is

standard-..array :constant array(1..31) of vstring (

(len =>,str >('u','.','e'% ,'o),'vohr >')

others =>
(len => 7, str => ('bi''''..' e'O''',Y , others >
(len => 9, str => ('c a 's S) 6t,6%il 4n)6, gs,

others => "))
(len => 7, str => (ca,1,en'd'''rothers >'

(ten => 9, strotherslt'r)6,n19 => '

others =>'')),

(fen => 8, ther => 6 'd)),61,e" ,''''' tes=

others => ' T

(len =>0, sr >(='14) (i,62,4 'd,'tn','l oterds =>

others => >)),
(len =>, str => (l','i','b''c, others => ',

others => '

others => '')),

(len => 4, sir => ('m,'' ','h',, others =>'

(len => 9, str =>(ilo1,6I961 4-,6fi','oT
others =>")),

(len => 8, str => ('o,'','.,'f,',l'e,, others
(len =>18, sir => ('r,'a','w, ',,','p' oter -> '

others => ' T
(len =>19, sir => (6'' ' ',hi, 'i, 'o',4cI ~d

others => '),
(len =>, sr => (''''T'' tes= P4'))

(len => 6, sir => (' 'In','s',','','', others '>11)

(fen =>'19, sir =>n u,
others => '')

(len => 3, str => r't,'t',''2,,m,, others =>

(te > 3, tr > UNCLASS4 qI'duI'dEDntia 1, i'

UNCLASSIFIED STANDARD-LIST Specification 107

others =>'),
(len =>20, str => (''' ,h' Ck''''''

others =>'
(len => 4, str =>(Cu',n','i', 'x', others =->''
(len => 9, str => 'x ' Vd n s',)6

others => '')),

(len =>9, str => ('u','n','i',' x'",6 pV'r','c','s', others =>

function exclude(unit: in vstring) return boolean is
begin

for i In standard..array'first. .standard-array'last loop
if unit = standard..array(i) then

return true;
end if;

end loop;
return false;

end exclude;

function exclude(umt: in a-..string) return boolean is
begin

for i in standard-.array'first. .standarc-array'last loop
If unit.len = standard..array(i).len and then

unit .s =standard..array(i) .str(1..
standarc-array(i) .len) then
return true;

end If;
end loop;
return false;

end exclude;

- procedure test-..array is
- begin
- for i in standarc-array'first. .standard-array'last loop
- put(i,3);

- put(standard-array(i) .str(1. .standard..array(i).len));
- put-ine(",");
- end loop;
- return;
- end tescarray;

end STANDARDJJST;

Definhton of Package COUNTJIO (COUNTJIO.def.a):

with TExTJiO;

package COUNT-10 is new T:XTJO.NTEGEKJIO (NUM -> TEXT-Io.COUNT);

UNCLASSIFIED

UNCLASSIFIED 108

Definiton of Package INTJO (INTJO.def.a):

with TEXTIO;
package INTJO Is new TEXTJO.INTEGERJO (NUM => INTEGER);

U

UNCLASSIFIED

UNCLASSIFIED 109

Appendix C: TEST RESULTS

The ARCT was tested on a test library patterned after the examples presented in Appendix
D. This library consisted of 5 program units and a make-file:

Package PI:

package p1 is

pragma change-type ("objectsiitypes","07/08/88 17:21:24");

-object and type declarations;

pragma changetype("ildef","07/08/88 17:21:37");

function il return integer;

pragma change-type ("i2def","07/08/88 17:21:50");

function i2 return integer;

pragma change-type ("body_.nprocs","07/08/88 17:22:00");
-rest of procedures

end p1;
package body p1 is

function il return integer Is
begin

return 0;
end;

function i2 return integer Is
begin

return 0;
end;

end p1;

Package P2:

package p2 Is

pragma change-type ("objects.n-types","07/08/88 17:22:59");

-object and type declarations;

pragma change-type ("bodyJnprocs","07/08/88 17:23:20");
-rest of procedures

UNCLASSIFIED

UNCLASSIFIED 110

end p2;
package body p2 is

end p2 ;

S

Main Program:

with pl,p2 ; use pl,p2;

procedure main is

pragma change-type ("types","07/08/88 17:19:50");
-type declaractions go here

-pragma inline(il), inline(i2);

pragma change-type ("sl-decl","07/08/88 17:20:02"); P

procedure sl; is separate;

pragma change-type ("s2_decl","07/08/88 17:20:20");

procedure s2; Is separate; P

pragma change-type ("body..nprocs","07/08/88 17:20:35");
-the rest of main goes here.

end main;

0

Separate Procedure SI:

separate(main);
procedure sl is

-body of sl
-contains a call to il but no call to i2

end sl;

UNCLASSIFIED

UNCLASSIFIED11

Separate Procedure S2:

separate(main);
procedure s2 Is

-body of s2
-does not call ii or i2

end s2;

Make-File:

p1.0 : pl.a;

p2.o : p2.a;

mmain - iinan.a
pl -a /body-..n..procs /guide
p2.a /body..nprocs;

mainpass: main.a
pl.a /body-..n.procs /guide
p2.a /body-..n.procs /i2def;

sl.o :sl.a mainpass;

s2.o: s2.a mainpass;

main.e: pl.o p2.o main.o sl.o s2.o;

Using the command

arct-make -s main arct-makefile

generated the following output (recall that no units were yet compiled):

arct.ada pl.O.a
arct.ada=> /usr/vads5/bin/ada pl.O.a -v > .arct.source/.arct.temp
arct.ada=> (cannot interface to compiler)
arct.ada p2.O.a
arct.ada=> /usr/vads5/bin/ada p2.O.a -v > .arct.source/.arct.temp
arct.ada=> (cannot interface to compiler)
arct.ada main .O.a
arct.ada-> /usr/vads5/bin/ada main.O.a -v > .arct.soulrce/.arct.temp
arct.ada=> (cannot interface to compiler)
arct.ada sl.O.a
arct.ada-> /usr/vads5/bin/ada sl.O.a -v > .arct.source/.arct.temp
arct.ada=> (cannot interface to compiler)
arct.ada s2.O.a

UNCLASSIFIED

UNCLASSIFIED 112

arct.ada=> /usr/vads5lbinlada s2.0.a -v > .arct .source/.arct .temp
arct.ada=> (cannot interface to compiler)
csh -c echo Id pl.obj p2.obj main.obj sl.obj s2.obj -o main.exe

This command also set
arct-.makefile
to be the current
make-file for the unit
main.
When issued again, no output was produced.

The first test involved editing units p1 and p2, making additions to their bodies and produc-
ing the following:

Package P1 (version 2):

package p1 is

pragma change-..type ("objects.....types" ,"07/08/88 17:21:24");

-object and type declarations;

pragma change-type("ildef" ,"07108/88 17:21:37");

function il return integer;

pragma change-..type ("i2def',"07108188 17:21 :50");

function i2 return integer;

pragma change-..type ("body-it..procs" ,"07/08/88 17:22:00");
-rest of procedures

end pi;
package body p1 is

function il return integer is
begin

return 0;
end;

function i2 return integer is
begin

return 0;
end;

procedure new..proc Is
-new procedure added here
begin

null;
end;

end pl;

UNCLASSIFIED

UNCLASSIFIED 113

Package P2 (version 2):

package p2 is

pragma change-type ("objects-n-.types","07/O8/88 17:22:59");

-object and type declarations;

pragina change-..type ("body.ii...procs" ,"07/08/88 17:23:20");
-rest of procedures

procedure p2-new-.proc;

end p2;
package body p2 is

procedure p2..new...proc is
- externally visible new procedure inserted
begin

null;
end;

end p21;

Issuing the command

arctmake main

produced the following results:

arct.ada pl.1.a
arct.ada=> /usr/vads5/bin/ada p1 l.a -v > .arct. source/. arct.temp
arct.ada=> (cannot interface to compiler)
arct.ada p2.1.a
arct .ada=> /usr/vads5fbin/ada p2.1 .a -v > .arct .source/.arct .temp
arct.ada=> (cannot interface to compiler)
csh -c echo ld pl.obj p2.obj main.obj sl.obj s2.obj -o main.exe

T'he second test involved modifying the objects-ntypes section of p1 so that all units but p2

would need recompiling.

Package P1 (version 3):

package p1 is

pragma change-..type ("objects-.itjypes","07/08/88 17:21:24");

-object and type declarations;
type my-..type Is new integer;

pragma change...type("ildef" ,"07/08/88 17:21:37");

UNCLASSIFIED

UNCLASSIFIED 114

function ii return integer;

pragma change-..type ("i2def" ,"07/08/88 17:21:50");

function i2 return integer;

pragma change-..type ("body...r-procs" ,"07/08188 17:22:00");
-rest of procedures

end p1;
package body p1 is

function ii return integer is
begin

return 0;
end;

function i2 return integer is
begin

return 0;
end;

procedure new...proc is
-new procedure added here
begin

null;
end;

end p1;

Running arct-.make performed as anticipated, producing the following output:

arct.ada pl.2.a
arct.ada=> /usr/vads5/bin/ada pl.2.a -v > .arct.source/.arct.temp
arct.ada-> (cannot interface to compiler)
arct.ada main .0.a
arct .ada-> /usr/vads5/bin/ada main.0.a -v > .arct. source/. arct .temp
arct.ada=> (cannot interface to compiler)
arct.ada sl.0.a
arct ada-> /usr/vads5fbin/ada si .0.a -v > .arct .source/.arct .temp
arct.ada=> (cannot interface to compiler)
arct.ada s2.0.a
arct.ada=> /usr/vads5/bin/ada s2.0.a -v .-arct.source/.arct.temp
arct.ada=> (cannot interface to compiler)
csh -c echo Id pl.obj p2.obj main.cbj sl.obj s2.obj -o main.exe

The third test included changes to units si and s2:

UNCLASSIFIED

UNCLASSIFIED 115

Separate Procedure S1 (version 2):

separate (main);
procedure sl is

-body of sl
-contains a call to il but no call to i2

begin

il; -actually change the source of sl.a

end sl;

Separate Procedure S2 (version 2):

separate(main);
procedure s2 is

-body of s2
--does not call il or i2

begin

null; -change s2 as well

end s2;

The following results were produced by arct_nake:

arct.ada sl.1.a
arct.ada=> /usr/vads5/bin/ada sl.l.a -v > .arct.source/.arct.temp
arct.ada=> (cannot interface to compiler)
arct.ada s2.l.a
arct.ada=> /usr/vads5/bin/ada s2.1.a -v > .arct.source/.arct.temp
arct.ada=> (cannot interface to compiler)
csh -c echo id pl.obj p2.obj main.obj sl.obj s2.obj -o main.exe

The final test consisted of changing unit
p1

before the occurrence of the first
CHANGE-TYPE

pragma. This change should give rise to a
"GENERAL"

change, causing all units which depend on any part of
p1

to need recompiling.

UNCLASSIFIED

UNCLASSIFIED 116

Package P1 (version 4):

package pl is

type my-type2 is new integer;
- by placing a type declaration before the first change-type
- pragma, change type "GENERAL" will be signalled and will
- force recompilation of all units depending on this one

pragma change-type ("objects-n-types","07/08/88 17:21:24");

-object and type declarations;
type my-type is new integer;

pragma change-type("ildef","07/08/88 17:21:37");

function il return integer;

pragma change-type ("i2defr,"07/08/88 17:21:50");

function i2 return integer;

pragma change-type ("bodyjtn-procs","07/08/88 17:22:00");
-rest of procedures

end pl;
package body pl is S

function il return integer is
begin

return 0;
end;

function i2 return integer is
begin

return 0;
end;

procedure new-proc is S
-new procedure added here
begin

null;
end;

end pl;

The following output was produced:

UNCLASSIFIED

UNCLASSIFIED 117

arct.ada pl.3.a
arct .ada=> /usr/vads5lbin/ada p1 .3.a -v > .arc t. source/. arct. temp
arct.ada=> (cannot interface to compiler)
arct.ada main .O.a
arct .ada=> /usr/vads5lbin/ada main .O.a -v > .arct. source/. .arct .temp
arct.ada=> (cannot interface to compiler)
arct.ada sl.1.a
arct .ada=> /usr/vads5/bin/ada si .1.a -v > .arct .source/.arct.temp

arct.ada=> (cannot interface to compiler)
arct.ada s2.1.a
arct .ada=> /usr/vads5/bin/ada s2. l.a -v > .arc t. source/. arct. temp
arct.ada=> (cannot interface to compiler)
csh -c echo Id pl.obj p2.obj main.obj sl.obj s2.obj -o main.exe

UNCLASSIFIED

UNCLASSIFIED 118

UNCLASSIFIED

UNCLASSIFIED 119

Appendix D:

A New Reference Model for Change Propagation
and Configuration Management in Software Systems

Joseph L. Linn, Cathy Jo Linn, and Robert I. Winner
Institute for Defense Analyses

Alexandria, Virginia

Abstract: Change-Propagation/Configuration-Management tools for software
development have the important task of ensuring that changes in source text are
correctly propagated to the modules used to construct executable versions of a
software system while simultaneously attempting to minimize the amount of
recompilation. In this paper, we present a simnle nethod for modeling various
changes in source modules and for controlling how these changes should be
propagated by retranslation. Finally, a basic tool set is described based on
these notions.

Introduction

Ensuring that a (software) system has been constructed using the appropriate source
modules is a troublesome problem in system development. Moreover, needless recompilation,
retranslation, and relinking of modules significantly increases development time. Thus, a
number of systems have been developed that try to reduce the amount of retranslation required;
two that we will refer to in this paper are the Unix" make utility [Feldman79] and the Odin sys-
tem [Clemm84].
These systems are reasonably successful in preventing needless retranslations; still, it is desir-
able to reduce unneeded retranslation even further. This paper attempts to address the following
two points:

(a) module interdependencies and module changes may be captured at a very detailed level
and these detailed characterizations used to reduce the amount of retranslation.

(b) the discovery of how a module has changed (or, the "types" of module changes) from one
version of the source to another may be implemented efficiently.

We begin with a discussion of basic terminology since the usage of terms here may not
agree with intuitive usage. First, some of the modules created and manipulated during the
development process are produced automatically by the invocation of a construction pro-
cedure'. For example, an object module is produced by the invocation of a compiler using
appropriate high-level language modules as input. Modules that are created automatically by the

" Unix is a Trademark of AT&T Bell Laboratories.
By the construction procedure, we mean the sequence of steps that must be accomplished to produce a given

module from the modules upon which it depends. A construction procedure could be as simple as invoking a single com-
piler or linker; conversely, more complicated steps might also be included such as the invocation of preprocessors, crea-
tion of libraries, the installation of overlay segments, placing modules in specific directories, downloading modules for
execution on a remote target. The specification of the steps of these construction procedures is, at the lowest levels,
necessarily dependent on the particular development environment; here, we assume that the construction procedure is
simply text that is to be processed by the operating system.

UNCLASSIFIED

0
UNCLASSIFIED 120

invocation of a construction procedure are called derived modules; modules that are not created
automatically are called source modules. Note that programs represented in high-level
languages are not necessarily source modules; a C program entered using an editor is a source
module, but a C program created by a parser generator is a derived module.

A source module is changed many times (typically by editing) during the course of its life;
thus, a module name actually names a set of files rather than a single file. Each of the files in this
set is called a version of the module. Also, any particular version v that is not an initial version
has one oi more previous versions (almost always, exactly one) that are edited to form v. Fol-
lowing [Clemm84], we do not define a version relationship for derived module, that is, for
derived modules, we do not define previous versions. How such a relationship might be defined
and used is an open issue.

Previously, we mentioned that a derived module was formed by invoking its construction
procedure using appropriate modules, or more precisely, appropriate version of modules as
input. Thus, the name of the derived module is related to the names of the input modules used 9
in constructing the derived module. If <m,c> is an element of this relation (i.e. c is used to con-
struct M), then m is called the dependent module and c is called a component module. A
configuration of a particular module m is formed by binding each of the component modules of
m to specific versions. A valid configuration is one where the versions are found by the con-
sistent application of a version access policy2.

The problem of ensuring that the configurations are valid while simultaneously minimizing
retranslation has a number of interesting aspects, the most important of which are the following:
(1) Module Interdependency and Change Control,

(2) Version Management, and

(3) Configuration Management.
After discussing each of these aspects, the paper presents an example to demonstrate how these
concepts interact in the development process. Next, the tools that were developed to discover
specific types of changes and propagate them are discussed. Finally, our conclusions are
presented.

Module Interdependency and Change Control

The important concept immediately at hand concerns the relation established from depen-
dent modules to component modules. The key question is this: Given the state information (usu-
ally the creation/modification timestamp) for the current version of the dependent module and
the state information for the accessed version of each component module, how can one establish
the need to construct a new version of the dependent module? For example, given that a particu- 0
tar object module is formed by assembling a main program with two files containing library mac-
ros, how can one determine that a changed macro library causes the object module to need
reassembly? If the main program does not reference any of the macros that are changed, then
no reassembly is necessary. Even if changed macros have been utilized, it may happen that the
changes only affect internals of the operation and not the interface; thus, reassembly may still
not be required. S

The key to avoiding needless module reconstruction is to capture both the exact nature of
the dependency between the dependent module and the component module and also the exact

2 Operating systems and tools provide a wide variety of mechanisms to search for modules. One example is shown
in the search path mechanism of Multics and Unix whereby a user can specify a list of directories to be searched in order
to find a particular executable module. Another important example is the method that most linkers employ to determine 0
the appropriate search order of libraries used to satisfy undefined referenced symbols. A version access policy uses the
search mechanisms available to cause specific versions of modules to be accessed. The configuration management system
supports such policies by permitting parameterization of the search mechanisms via construction procedures.

UNCLASSIFIED

UNCLASSIFIED 121

nature of the change (if any) between the accessed version of the component module (usually the
newer version) and the version of the component module used to construct the current version
of the dependent module. The primary difference between the dependency/change model we
propose and the model commonly in use derives from the precision in capturing the nature of the

changes and dependencies3 . One popular model (discussed later) treats all dependencies the
same; additionally, all changes are treated identically. (In fact, the simplest model simply
assumes the modules change each time they are reconstructed) While this has proven to be very
effective for small- and medium-sized systems with fast compilation tools, it is not effective
either for large codes or when the translation tools are slow. For example, the popular treatment
of changes and dependencies can lead to massive recompilations of Ada® code when a low-level
procedure of a frequently "with-and-use"-ed package is changed even if the change has no effect
on the intermodule interfaces. The reference model we present can account for different types
of changes and allow a development team far greater control over reconstruction than models
that capture changes and dependencies with less precision.

Version Management

The reference model developed in this paper supports two additional concepts with respect
to version mangement. The first of these is the concept of alternative versions, or alternatives.
Now, each noninitial version of a module almost always has a unique previous version and each
version of a module normally has at most one direct successor version. However, a version may
have multiple versions that are direct successors; these are called alternatives. Alternatives typi-
cally arise either from a need to customize a module for a particular environment or from the
need for an alternative implementation strategy for module implementation. The other impor-
tant notion is that of a revision level; these are also called rev-levels or simply revisions. A revi-
sion is a version that is a component of a configuration that has been released from the develop-
ment organization. These versions must be permanently maintained. Version management tools
can be implemented relatively independently from tools for supporting change control and
configuration management. However, our model does impose a few constraints on the version
management system. These are detailed later in the paper.

Configuration Management

For configuration management, the reference model defines how the dependency and
change control information is used to decide whether the associated construction procedure for
the module is to be invoked. In addition, an implementation must assume responsibility for
maintaining the version bindings for the module so that revision levels can be determined. The
model does not (currently) prescribe any particular language for defining any of the structural
information that must be maintained; however, examples are presented in terms of a specific,
user-hostile, easily implemented interface language.

An Example

Before attempting to formally describe the information captured by the reference model,
we first consider an example to demonstrate the various data that are needed. Consider the pro-
gram skeleton shown in Figure-1. The figure depicts an Ada program consisting of a main

3 The statement "the definition of type 'stack.type' in module A has been modified" is clearly more precise than the
statement "module A has been modified". Similarly, the statement "module B depends on module A" is less precise than
the statement "module B uses type 'stack-type' and procedures 'push' and 'pop' from module A". The aim of this model
is to represent the more precise statements as well as the less precise.

® Ada is a Registered Trademark of the U.S. government - Ada Joint Program Office.

UNCLASSIFIED

UNCLASSIFIED 122

package pl; package p2;

object and type declarations; object and type declarations;

f procedures, functions,

function il(...); ... end il; and the package initialization;

function i2(...); ... end i2;

end p2;

other procedures, functions, separate(main); 9

and the package initialization procedure sl(...);

end p1;
includes a call to il but

with pl,p2; use pl,p2; no call to i2; 9
procedure main;

object and type declarations; end s1;

separate(main); 9

pragma inline(ii), inline(i2); procedure s2(...);

procedure sl(...); is separate;

procedure s2(...); is separate;

includes calls to neither

procedure code; il nor i2;

end main; end s2;

Figure-1.

procedure, two subprograms, and two packages. Each of these five components resides in a
separate text file. Figure-2 depicts the relation that captures the intermodule dependencies; here,
we are assuming that each of the source modules is to be compiled into an object module and
that the object modules are linked into an executable image. Such a graphical depiction can
become cluttered even for a small number of modules; thus, we will adopt the notation of
Figure-3. This type of notation is used for describing the relationships to the make utility, first
developed for the Unix system. Make gives the development team the means to describe not
only the dependency relation among the modules but also the commands that are required to
"make" the module. Indeed, the methods described in this paper should be viewed as evolving
from the capabilities provided by make.

Returning to the relation described in Figure-2 and Figure-3, one may observe that
"main.exe" is dependent on the object modules and also that each object module is dependent

UNCLASSIFIED

UNCLASSIFIED 123

(mi. exe

pl.a p2.a Cmain.a sas2.a

Figure-2.

main.exe: pl.o p2.o main.o

sl.o s2.o

pl.o: pl.a

p2.o: p2.a

main.o: pl.a p2.a main.a

sl.o: pl.a p2.a main.a sl.a

s2.o: pl.a p2.a main.a s2.a

Figure-3.

on the .a-module of the same name. It is not so obvious what is represented by the other depen-
dency arcs. Let us first consider how "main.o" is dependent on "pl.a". First, "main.o" is prob-
ably dependent on the types defined in "pl.a"; likewise, if "main" references any of the vari-
ables declared in "pl" then "main.o" is probably dependent on the variables declared as well.
What is meant here by "probably dependent" is that a change in either the type or object
declarations in "pl.a" will probably result in a different object module for "rI'ain" being pro-
duced by the compiler. Last, if "main" uses function "pl.il" then "main.o" is dependent on the

UNCLASSIFIED

UNCLASSIFIED 124

text that defines "pl.il" because "main" declares "pl.il" as "inline". However, "main.o" is not
dependent on the bodies of other procedures (besides "i1" and "i2") or on the package inititiali-
zation code because the linker is most likely responsible for the final binding of the entry points
to these codes. The dependencies between "main.o" and "p2.a" are similar.

Since "sl" and "s2" inherit the compilation environment of "main", the dependencies
explaiwed above apply to "sl" and "s2" as well as "main". Of course, "sl" and "s2" can also
reference variables and types declared in "main"; thus "sl.o" and "s2.o" are dependent on
"main.a". All of these dependency rules derive directly from the Ada language. However, a
development team may have additional knowledge about the dependencies.

Now, we proceed to show how a system can make use of the dependency information to
construct a valid configuration with a reduced need for recompliation. The way that make works
is that it uses a two-step process for verifying that all dependencies are properly satisfied for each
module, as follows.

procedure make(M:module);
without loss of generality

assume <Dl..Dn> are the modules that M depends on;
assume Construct(M) is the specified procedure to remake M;

ifM is a leaf then exit make;
-step 1

for D in <Dl..Dn> do make(D) endfor;
-step 2

for D in <Dl..Dn> do
if modification_.date(D)>modification-date(M) then

Construct(M); 1
exit make;

endif;
endfor;

endwig;
end make;

First, make recursively verifies that each component module is consistently constructed; a
module that is a leaf in the dependency relation is consistent by definition. Next, it compares the
creation/modification date of each component module to the creation/modification date of the
dependent file. If it finds that one of the component files is younger than the dependent file, it
"reconstructs" the dependent file using rules that the development team provides. The macro
capabilities and the techniques that make provides for "guessing" how to make a module result 0
in a utility that is very easy to use and very powerful. In the current example, a request to make
"main.exe" after a change to "p2.a" would first result in remaking "p2.o", "main.o", "sl.o",
and "s2.o" and then a relinking.

There are basically two problems with the approach that we have taken so far. The lesser of
the two is that the dependency graph that we have come up with contains redundancy in that
"sl.o" and "s2.o" are not really dependent on the packages directly; rather, the main procedure •
acts as an agent in propagating the dependency. In a large system where one has p packages and s
subprograms, this will require the specification and maintenance of pxs edges. A possible solu-
tion to this redundancy problem is to make "sl.o" and "s2.o" dependent on "main.o" rather
than on "pl.a", "p2.a", and "main.a"; this is depicted in Figure-4 and Figure-5. Using this tech-
nique, only p+s edges are needed. A drawback to the scheme of Figure-4 is that a recompilation
of "sl.o" (for error checking, say) cannot occur without a recompilation of "main.o". This
might be problematic if the compilation of "main" is lengthy. The recompilation of "main" can
be eliminated by the use of dummy files, i.e. by defining a trivial construction procedure for a file

UNCLASSIFIED

UNCLASSIFIED 125

main.exe

Spl.a p2.a main.a sL~a s2.a

Figure-4.

main.exe: pl.o p2.o main.o

sl.o s2.o

pl.o: pl.a

p2.o: p2.a

main.o: pl.a p2.a main.a

sl.o: main.o sl.a

s2.o: main.o s2.a

Figure-5.

with the same components as "main.o". Thus, except for the added complexity in specifying the
relation, the redundancy problem can be handled by current techniques.

The larger problem, the one mainly to be addressed here, is that relations of the sort that
have been discussed do not capture the various types of dependencies that were discussed above.
For example, a change in the package body part of "pl.a" is treated in exactly the same way as a
change in the type declarations of "pl.a". This effectively defeats the separate compilation facil-
ities of the language in our example since any change in "pl.a" causes all of "pl.o", "main.o",
"sl.o", and "s2.o" to be reconstructed. What is needed is to change the way that we determine
if a new construction is needed. After first presenting the process, we will then turn to the new
bookkeeping requirements that arise from the process.

procedure new.make(M:module.name);
wig assume <D1..Dn> are the names of the

UNCLASSIFIED

UNCLASSIFIED 126

modules that M depends on;
assume Construct(M) is the specified procedure to remake M;

if M is a leaf then exit new_make;
for D in <Dl..Dn> do new..make(D) endfor;
MM:= module resulting from the previous construction of M;
for D in <D1..Dn> do

DV':= version of D when MM was constructed;
DV:= current-version(D); S
if the changes from DV' to DV are propagated along <M,D> then

invoke Construct(M) to create MM', the new configuration of M;
make MM' the current configured module of M;
record which versions of each component module are used to

create MM';
exit new-make; S

endif;
endfor;

endwlg;
end new_make;

There are a number of important differences between the earlier "make" procedure and the 0
"new-make" procedure. First, note that we must now distinguish between module names and
module versions; further, enough versions of modules must be saved so that the changes between
relevant versions can be determined. Second, the versions used to construct particular
configurations must now be maintained in order to determine which are the relevant versions;
this, of course, is a requirement of configuration management systems that support revision lev-
els. Last, arcs are now active parts of the process in that the specification of arcs must now 0
specify which changes are not propagated.

Figure-6 shows a specification for the relationship that takes into account these new ideas.
The only difference is that some of the source modules are appended by a "Ichange-type-list"
specification. (One of the strengths of our model is that the set of change-types are

main.exe: pl.o p2.o main.o
sl.o s2.o

pl.o: pl.a

p2.o: p2.a

main.o: main.apl.a/init-codejxprocs
p2.a/initcode..-n-procs

sl.o: sl.a main.a/proccodenlprocs
pl.a/initcode-n.procs,i2_def 0
p2.a/initcode..nprocs

s2.o: s2.a main.a/proccode..naprocs
pl.a/initcode-n..procs,iLdef,i2.def
p2.a/initcoden..procs

Figure-6.

UNCLASSIFIED

UNCLASSIFIED 127

user-defined; however, an example of a change.type used later in the paper is a
"initcode.and-procs" change. A change of this type occurs in editing a package if the change
involves either the initialization code or a procedure not expanded inline in any "with"-er of the
package.) The changes in the change-typeJist are the ones that do not propagate along the arc.
Notice especially that the dependency from "sl.o" to "pl.a" does not propagate a change of
type "i2_def". Another item of note is that the redundancy is still present. The solution that we
adopt is shown in Figure-7. "Mainpass" is introduced to eliminate the need for a dummy file as
discussed previously. The interpretation of "mainpass" is that "mainpass" is a node in the graph
that is not associated with any module; rather, any changes that flow into "mainpass" are pro-
pagated onto its "output arcs" unless they are suppressed by the normal mechanism. Note that
the "il-def" change-type is not propagated into "s2.o" from "mainpass". Now we are posi-
tioned to present a formalization of these concepts.

The Reference Model

A change control system consists of the following parts:

(1) A set (possibly infinite) of possible change types (C).

(2) A set of leaf module nodes(L).

(3) A set of interior (non-leaf) module nodes (I).

(4) A .et of pass-thru nodes (P). N is defined as the set of all nodes, i.e. LUIUP.
(5) E, the edges in the system, is a subset of NxNx{C--*Boolean}. E is restricted so that

{<X,Y> I 3f: <X,Y,f> is in E} is a partial order. The interpretation of <X,Y,f>, here, is
that (a) Y is a component module of X and (b) if (c is in C) and f(c) then c does not pro-
pagate along <X,Y,f>. For example, <sl.o,mainpass,g> is an edge of the example in
Figure-7, where g is given by

true if x="i2_def".
g(x) - false, otherwise.

main.exe: pl.o p2.o main.o

sl.o s2.o

pL.o: pl.a

p2.o: p2.a

main.o: main.a
pl.a/init-code-n-procs
p2.a/initcode-n-procs

mainpass: main.a/proccode..njprocs
pl.a/initcode..amprocs
p2.a/initcode-n.procs

sl.o: sl.a mainpass/i2_def

s2.o: s2.a mainpass/il-def,i2_def

Figure-7.

UNCLASSIFIED

UNCLASSIFIED 128

Changes are propagated in the system according to the following (which is a restatement of the
previous algorithm with the addition of pass-thru nodes and is couched in the language of the for-
mal model):

procedure new.make.with-passthrus(M:node);
wig assume {<M,Dl,fl>,<M,D2,f2>,...<M,Dn,fn>} are the edges in the

graph out-incident with M;
assume Construct(M) is the specified procedure to remake M,

if M is a module node; 0

if M is a leaf then exit new-make;

for <M,D,f> infR {<M,Dl,fI>,<MD2,f2>,...<M,Dn,fn>) do
new-make(D)

endfor; S

MM:= module resulting from the previous construction of M;
CHANGES:= {};
for <M,D,f> in {<M,D1,fl>,<M,D2,f2>,...<M,Dn,fn>} do

If D is a module node then
DV':= version of D when MM was constructed; 9
DV:= current-version(D);
CHANGES':=changes from DV' to DV;

else -if D is a passthru node
- point 2.2

recover changes associated with M, calling the set CHANGES';
endif; 9
CHANGES:= CHANGES union {c in CHANGES' and f(c)};
if D is a module node and Changes#{} then

- point 1
invoke Construct(M) to create MM', the new configuration of M;
make MM' the current configured module of M;
record which versions of each component module is used to

create MM';
exit new-make;

endif;
endfor;
if M is a passthru node then

- point 2.1
record CHANGES associated with M;

endif;
endwlg;

end new.make;

There are two important considerations. The first is that the code is somewhat complicated by 9
the fact that the loop where propagated changes are discovered is terminated as soon as possible
in case of a module node (point 1). This is simply because there is no need to continue change
propagation discovery if one knows that the construction procedure will have to be invoked any-
way. The second consideration is that the process records the changes that propagate through a
pass-thru node (point 2.1) and later recovers them (point 2.2). The algorithm goes not care
whether this is done by global variables or by files; it could actually be done in persistent storage •
and cached. These details are to be determined by an implementor.

UNCLASSIFIED

UNCLASSIFIED 129

Change Propagation on Ada Text Modules

In this section, we describe a tool set that can be used to implement the concepts of the
reference model. Actually, three tools have been implemented: the version utility, the new-make
utility, and the vedit utility. The job of version is simply to maintain two data structures relevant
to the source modules under its control. One of the data structures contains the version history
for all the files. Essentially, this just consists of keeping track of the parent module(s) for each
module that is not an initial version. The second data structure maintains data for revisions, that
is, it records each instance of one module having been used in the construction of another. Note
that new-make provides this information whenever it constructs a new configuration of a
module. This parent module information is provided by vedit for source modules, as explained
below. The current version management software does not implement the idea of "file deltas" as
is used in the SCCS utility [Rochkind75] or the RCS[Tichy82]. The RCS implementation of
"separate deltas" seems most appropriate here since we are concerned with alternatives; a more
sophisticated version server is planned that uses this i 'ea.

New-make essentially implements the algorithm given previously. It maintains three data
structures. One of these is the change control system, as modeled above. The format of the
input used to describe the graph is as given in Figure-6 and Figure-7. Note that the user specifies
which changes are not to be propagated; this method was chosen so that the user would not inad-
vertantly suppress compilations. The most interesting idea here is how new-make discovers
what changes should be generated; this is the topic of the next section.

Another data structure maintained by new-make is the mapping between a module name
and the actual module represented by the current configuration. Importantly, this data is not
maintained as part of the version management system; this is because several different projects
may be using the same files. Suppose, for example, that a project was producing software to run
on either a Macintosh or a SUN. It is likely that many of the files used in the two configurations
would be alternatives of the same module. Thus, the current version depends on whether you
are working on ti,e MacIntosh version or the SUN version of the system. This idea is indepen-
dent of the version utilit'.

The last data structure maintained by new-make is the change cache. The idea here is that,
since it may be very expensive to determine how a module changes from one version to another,
the result of the change discovery procedure should be saved so that it can be used again. As
one might expect, this results in a very large savings of time; however, it is not as fast as simply
comparing the modification dates.

The last of the three tools is vedit. Vedit is a very simple tool that essentially "wraps-
around" the text editor for maintaining version information. It essentially implements the follow-
ing pidgin code.

procedure vedit(M:node);
MV:- current-version(M);
invoke the text-editor to create MV', the new version of M;
record MV as the parent of MV'
make MV' the current version of M;

end vedit;

Note the similarity of this process to what is done in new-make.

Discovering Change Types

The most difficult aspect of the new model is that it requires a tool that can discover the
type of change between versions of a module automatically (after an appropriate setup). Since

UNCLASSIFIED

UNCLASSIFIED 130

we are trying to develop something substantially less complex than an incremental compiler, use
of the new model is predicated on the invention of an effective means of having the user instruct
the system what types of changes have occurred. Our approach is to divide modules into two
kinds: (a) Ada source modules, and (b) other modules. In the case of a module that is not an
Ada source module, a change of type "general" (note that change-types are represented by text
strings) is generated if the two files being compared are not identical. This is essentially the same
technique as used in the Odin system. (One should note, however, that the Odin tool fragments
work together to provide some of the benefits of the method below.)

However, our system determines change-types Ada files by having the user conceptually
partition the source modules into linear regions as shown in Figure-8. An inspection of the parti-
tioning depicted in Figure-8 reveals that a different change-type may be associated with each of

package pl; package p2;

object and type declarations; object and type declarations;

--- - -- - procedures, functions,

function il(...); ... end il; and the package initialization;

function i2(...); .. end i2;

end p2;

other procedures, functions, separate(main);
and the package initialization procedure sl(...);

end pl; _includes a call to il but
with pl,p2; use pl,p2; no call to i2; 0
procedure main;

object and type declarations; end si;

separate(main);

pragma inline(il), inline(i2); procedure s2(...);
procedure sl(...); is separate; -
procedure s2(...); is separate;

includes calls to neither

procedure code; il nor i2;

end main; end s2;

Figure-8. 0

UNCLASSIFIED

UNCLASSIFIED 131

these linear regions. Thus, after the user has made his partitioning, there are two remaining
issues: (1) How are these regions communicated to new-make? and (2) Exactly how does this the
system use these regions to determine change-types?

The answer to the first question may be obtained by inspecting Figure-9; this is how the file
would look after the user has delineated the regions in the source text. An Ada "pragma" is
used to indicate the regions. (In Ada, a pragma is like a compiler directive; Ada compilers are
supposed to ignore pragmas that they don't understand). As can be seen, the "change-type"
pragma has two parameters. The first of these is a change-type, the second is an arbitrary string
that can be used for disambiguating pragma references.

The system "discovers" change-types, then, according to the following two-step process.
First, it reads the two files to be considered and finds all of the "change-type" pragmas in both
files. If the sequence of "change-type" pragmas is identical (that is, they have identical parame-
ters), then the system can proceed to the second step; otherwise, the change-type set discovered
is {"general"J. In the second step, the system compares the text following each "change-type"
pragma to the corresponding text for the other file. If the text is not identical, then the
change-type indicated in the first of the pragma parameters is added to the set of change-types
discovered. In this comparison, the text occurring before the first "change-type" pragma is con-
sidered to be preceded by 'pragma change-type("general","");'.

As an example, suppose that during an edit session the package body and the body of func-
tion il were changed. The above process would generate {"initcode-n-procs","ildef"} as the
change set. As a last observation, the above process can actually be implemented as a single
pass. In fact, it can be based on a two-tape finite state machine; thus, it takes only a little longer
than simply reading the files.

package pl;

pragma change-type
("objects-n-types","061186 430P");

object and type declarations;

pragma change-type
("il-def","061186 430P");

function il(...); ... end il;

pragma change-type
("i2.def","061186 430P");

function i2(...); ... end i2;

pragma change-type
("initcode-A-procs","061186 430P");

other procedures, functions,
and the package initialization;

end pl;

Figure-9.

UNCLASSIFIED

UNCLASSIFIED 132

Conclusions

In this paper, we have presented a new model for change propagation and configuration
management that allow the innovative concepts of the Unix make utility to be extended to give
the user more control over the compilation process. It requires thai the user create a file of
essentially the same complexity as a "makefile" and that certain "marks" be placed into source
files so that change-types can be readily identified. Although the presentation is directed
towards change propagation discovery for Ada text modules, the concepts apply readily to other
languages as long as the language processor accepts some form of comment. Moreover, the
scope of the reference model is not limited to the software domain; its applicability to hardware,
firmware, officeware (i.e. text-processing) is only limited by a system designer's ability to build
change-type discovery procedures. Nor is it limited by the granularity of the tool fragments; it
can be made to work as well for monolithic translators as for translators that each do a small
piece of the work.

These points are especially important in light of a rather parochial view of Ada program
development, that is, that the compiler should be responsible for maintaining the dependencies
and (since this is an Ada requirement) that the model presented here doesn't apply. First, while
Ada compilers do propagate changes among the constiuent modules of a program, the model
used almost universally is the single change-type model. Since the vendors of Ada compilers are
also trying to field a product substantially less complex than an incremental Ada compiler, this
situation is unlikely to change. Second, not all programs eventually compiled by an Ada com-
piler will be coded in Ada; it is highly likely that Ada will often be used as an execution platform
(i.e. as a intermediate language) in the same way that C is used in the Unix system, e.g. by yacc
and lex. It is difficult to see how the Ada compiler is going to track changes in non-Ada pro-
grams!

Nevertheless, important integrated implementations of change control and propagation
have appeared, notably the CHILL Compiling System [Rudmik82]. The CCS maintains a
cross-reference between the modules in a system and the program units (i.e. variables, types,
subprograms) that each module references. In this way, the CCS can capture changes at a lower
level than the module level. Two key advantages of such a system are (1) that change discovery
and propagation occur without any user intervention, and (2) that the system automatically
tracks all program units rather than just the ones that are deemed important by the development
team. Thus, there is no chance that the development team can define incorrect interdepency
and change propagation information. The primary disadvantage of the CCS method (as com-
pared with the technique proposed here) is that the CCS method requires a closely integrated,
sophisticated compilation system whereas our system can be used with completely uncoupled
toolsets. Importantly, the two techniques are complementary; our method does not preclude the
use of integrated tool sets and is increasingly attractive as the degree of tool integration
decreases.

Finally, one should note that the reference model presented is truly a generalization of
"makefiles" in that "makefiles" translate directly into the structural specifications of the new
model. Further, if no "change-type" pragmas are included in a source file, all changes will be
propagated as general changes, just as in the make model. Of course, make will process the
structure much faster for these cases since its change-type discovery procedure is so much
simpler. Also, our current implementation does not nearly compare with make in terms of ease
of use since make-style rule-processing is not supported. Further, the concept of actually com-
paring the files to discover changes came to our project via the ODIN system. Also, the ODIN
system concept of using small granularity tool fragments makes it possible to automatically
obtain propagation restrictions that our system would have to obtain from the user. We hope to
extend our system to use rule processing as in make to obtain these specifications automatically
for tool sets with this small granularity approach. The combination of rule processing and
greater user control would decrease the effort of using the system.

UNCLASSIFIED

UNCLASSIFIED 133

References

The following papers contain information relevant to the topics in the paper.

[Ada83] Ada Language Reference Man;,-A, January, 1983.

[Clemm84] G.M. Clemm, "ODIN - An Extensible Software Environment", University
of Colorado, Dept. of Computer Science Technical Report CU-CS-262-84, 1984.

[Feldman79] S.I. Feldman "Make - A Program for Maintaining Computer Programs",
Unix Programmer's Manual, Seventh Edition, Volume 2A, January, 1979.

[Katz86] R.H. Katz, M. Anwarrudin, and E. Chang "A Version Server for Computer-
Aided Design Data", Proceedings of the 7wenty-third Annual IEEE/ACM Design Automation
Conference, Las Vegas, Nevada, June/July, 1986, pp. 27-33.

[Linn86] J.L. Linn and R.I. Winner, editors. The Department for Defense Requirements
for Engineering Information Systems, Volume 1: Operation Concepts, DRAFT, July 3, 1986.

[Rochkind75] M.J. Rochkind "The Source Code Control System", IEEE Transactions
on Software Engineering, SE-1(4), pp. 364-370, December, 1975.

[Rudmik82] A. Rudmik and B.G. Moore "An Efficient Compilation Strategy for Very
Large Programs", Proceedings of the SIGPLAN '82 Symposium on Compiler Construction,
pp.301-307, Boston, Massachusetts, June, 1982.

[Tichy82] W.J. Tichy "Design, Implementation, and Evaluation of a Revision Control
System", Proceedings of the Sixth International Conference on Software Engineering, pp.58-67,
Tokyo, Japan, September, 1982.

UNCLASSIFIED

UNCLASSIFIED 134

UNCLASSIFIED

Proposed Distribution List for IDA Paper P-2099

NAME AND ADDRESS NUMBER OF COPIES

Sponsor

Dr. John F. Kramer 5
Program Manager
STARS
DARPA/ISTO
1400 Wilson Blvd.
Arlington, VA 22209-2308

Other

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Mr. Steve H. Edwards 1
372 Jones Tower
101 Curl Drive
Columbus, OH 43210

IDA

General W.Y. Smith, HQ 1
Mr. Philip L. Major, HQ 1
Dr. Robert E. Roberts, HQ 1
Ms. Katydean Price, CSED 1
Dr. Robert I. Winner, CSED 1
IDA Control & Distribution Vault 2

Distribution List-1

